版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页陕西省宝鸡市北崖中学2024年九上数学开学达标检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是()A.22.5° B.25° C.23° D.20°2、(4分)某跳远队准备从甲、乙、丙、丁4名运动员中选取成绩好且稳定的一名选手参赛,经测试,他们的成绩如下表,综合分析应选()成绩甲乙丙丁平均分(单位:米)6.06.15.54.6方差0.80.20.30.1A.甲 B.乙 C.丙 D.丁3、(4分)为了解某校八年级900名学生每天做家庭作业所用的时间,随机抽取其中120名学生进行抽样调查下列说法正确的是()A.该校八年级全体学生是总体 B.从中抽取的120名学生是个体C.每个八年级学生是总体的一个样本 D.样本容量是1204、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.(A) B.(B) C.(C) D.(D)5、(4分)把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x) B.ax2(x﹣2)C.ax(x+1)(x﹣1) D.ax(x﹣1)26、(4分)已知正比例函数的图象上两点、,且,下列说法正确的是A. B. C. D.不能确定7、(4分)下列等式中,计算正确的是()A. B.C. D.8、(4分)函数中,自变量x的取值范围是A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠0二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)要使式子有意义,则的取值范围是__________.10、(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论:①c>0;②2a+b=0;③b2-4ac>0;④a-b+c>0;正确的是_____.11、(4分)如图,在▱ABCD中,∠B=50°,CE平分∠BCD,交AD于E,则∠DCE的度数是______.12、(4分)如图,某自动感应门的正上方处装着一个感应器,离地米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门1.2米的地方时(米),感应门自动打开,则_________米.13、(4分)古算题:“笨人执竿要进屋,无奈门框拦住竿,横多四尺竖多二,没法急得放声哭,有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足,借问竿长多少数,谁人算出我佩服,”若设竿长为x尺,则可列方程为_____(方程无需化简).三、解答题(本大题共5个小题,共48分)14、(12分)矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.15、(8分)社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?16、(8分)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形和图形,若图形和图形分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形和图形是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点,点,①下列四个点,,,中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标的取值范围;(2)四边形GHJK的四个顶点的坐标分别为,,,,一次函数图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.17、(10分)武汉某中学为了了解全校学生的课外阅读的情况,随机抽取了部分学生进行阅读时间调查,现将学生每学期的阅读时间分成、、、四个等级(等:,等:,等:,等:;单位:小时),并绘制出了如图的两幅不完整的统计图,根据以上信息,回答下列问题:(1)组的人数是____人,并补全条形统计图.(2)本次调查的众数是_____等,中位数落在_____等.(3)国家规定:“中小学每学期的课外阅读时间不低于60小时”,如果该校今年有3500名学生,达到国家规定的阅读时间的人数约有_____人.18、(10分)如图,矩形中,分别是的中点,分别交于两点.求证:(1)四边形是平行四边形;(2).B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是.20、(4分)若=3-x,则x的取值范围是__________.21、(4分)若ab=﹣2,a+b=1,则代数式a2b+ab2的值等于_____.22、(4分)用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时第一步先假设所求证的结论不成立,即问题表述为______.23、(4分)一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_____.二、解答题(本大题共3个小题,共30分)24、(8分)“金牛绿道行“活动需要租用、两种型号的展台,经前期市场调查发现,用元租用的型展台的数量与用元租用的型展台的数量相同,且每个型展台的价格比每个型展台的价格少元.(1)求每个型展台、每个型展台的租用价格分别为多少元(列方程解应用题);(2)现预计投入资金至多元,根据场地需求估计,型展台必须比型展台多个,问型展台最多可租用多少个.25、(10分)已知关于x的一元二次方程的两个实数根为x1、x2且x1+2x2=9,求m的值.26、(12分)在平面直角坐标系中,点A的坐标为,以线段OA为边作等边三角形,使点B落在第四象限内,点C为x正半轴上一动点,连接BC,以线段BC为边作等边三角形,使点D落在第四象限内.(1)如图1,在点C运动的过程巾,连接AD.①和全等吗?请说明理由:②延长DA交y轴于点E,若,求点C的坐标:(2)如图2,已知,当点C从点O运动到点M时,点D所走过的路径的长度为_________
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.【详解】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.考点:正方形的性质.2、B【解析】
根据平均数与方差的性质即可判断.【详解】∵4位运动员的平均分乙最高,甲成绩也很好,但是乙的方差较小,故选乙故选B.此题主要考查利用平均数、方差作决策,解题的关键是熟知平均数、方差的性质.3、D【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.该校八年级全体学生每天做家庭作业所用的时间是总体,故A不符合题意;B.每个学生每天做家庭作业所用的时间是个体,故B不符合题意;C.从中抽取的120名学生每天做家庭作业所用的时间是一个样本,故C不符合题意;D.样本容量是120,故D符合题意;故选:D.考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、C【解析】试题解析:A、是中心对称图形,不是轴对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既是轴对称图形又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选C.5、D【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.【详解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选D.本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.6、A【解析】
根据:正比例函数,y随x增大而减小;,y随x增大而增大.【详解】因为正比例函数,所以,y随x增大而减小,因为,图象上两点、,且,所以,故选A本题考核知识点:正比例函数.解题关键点:理解正比例函数性质.7、A【解析】
根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】A、a10÷a9=a,正确;B、x3•x2=x5,故错误;C、x3-x2不是同类项不能合并,故错误;D、(-3xy)2=9x2y2,故错误;故选A.本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.8、C【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.故选C.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x≥0,解得:x≤2,故答案为x≤2.10、①②③【解析】
由抛物线开口方向得到a<0,由抛物线与y轴交点位置得到c>0,则可对①进行判断;利用抛物线的对称轴方程可对②进行判断;由抛物线与x轴的交点个数可对③进行判断;由于x=-1时函数值小于0,则可对④进行判断.【详解】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴交点位于y轴正半轴,∴c>0,所以①正确;∵抛物线的对称轴为直线,∴b=-2a,即2a+b=0,所以②正确;∵抛物线与x轴有两个不同的交点,∴b2-4ac>0,所以③正确;∵x=-1时,y<0,∴a-b+c<0,所以④错误.故答案为:①②③.本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.11、65°【解析】
利用已知条件易证△DEC是等腰三角形,再由∠B的度数可求出∠D的度数,进而可根据等腰三角形的性质求出∠DCE的度数.【详解】∵四边形ABCD是平行四边形,
∴AD∥BC,∠B=∠C=50°,
∴∠DEC=∠ECB
∵CE平分∠BCD交AD于点E,
∴∠DCE=∠BCE,
∴∠DEC=∠DCE,
∴,
故答案为:.本题考查的知识点是平行四边形的性质,解题关键是利用等腰三角形性质进行解答.12、1.1【解析】
过点D作DE⊥AB于点E,构造Rt△ADE,利用勾股定理求得AD的长度即可.【详解】解:如图,过点D作DE⊥AB于点E,依题意知,BE=CD=1.6米,ED=BC=1.2米,AB=2.1米,则AE=AB−BE=2.1−1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD==1.1(米)故答案是:1.1.本题考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AD的长度.13、(x−1)1+(x−4)1=x1【解析】
设竿长为x尺,根据题意可得,屋门的宽为x−4,高为x−1,对角线长为x,然后根据勾股定理列出方程.【详解】解:设竿长为x尺,由题意得:(x−1)1+(x−4)1=x1.故答案为:(x−1)1+(x−4)1=x1.本题考查了利用勾股定理解决实际问题,解答本题的关键是根据题意表示出屋门的宽,高.三、解答题(本大题共5个小题,共48分)14、(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,)【解析】
(1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解;(2)分CG=EG、CE=GE、CE=CG三种情况分别求解;(3)①由点P为矩形ABCO的对称中心,得到求得直线PB的解析式为,得到直线AD的解析式为:,解方程即可得到结论;②根据①中的结论得到直线AD的解析式为,求得∠DAB=30°,连接AE,推出A,B,E三点共线,求得,设M(m,0),N(0,n),解方程组即可得到结论.【详解】(1)如图1,在矩形ABCO中,∠B=90°当点D落在边BC上时,BD2=AD2﹣AB2,∵C(0,3),A(a,0)∴AB=OC=3,AD=AO=a,∴BD=;(2)如图2,连结AC,∵a=3,∴OA=OC=3,∴矩形ABCO是正方形,∴∠BCA=45°,设∠ECG的度数为x,∴AE=AC,∴∠AEC=∠ACE=45°+x,①当CG=EG时,x=45°+x,解得x=0,不合题意,舍去;②当CE=GE时,如图2,∠ECG=∠EGC=x∵∠ECG+∠EGC+∠CEG=180°,∴x+x+(45°+x)=180°,解得x=45°,∴∠AEC=∠ACE=90°,不合题意,舍去;③当CE=CG时,∠CEG=∠CGE=45°+x,∵∠ECG+∠EGC+∠CEG=180°,∴x+(45°+x)+(45°+x)=180°,解得x=30°,∴∠AEC=∠ACE=75°,∠CAE=30°如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE,∴EH=AE=AC,BQ=AC,∴EH=BQ,EH∥BQ且∠EHQ=90°∴四边形EHQB是矩形∴BE∥AC,设直线BE的解析式为y=﹣x+b,∵点B(3,3)在直线上,则b=6,∴直线BE的解析式为y=﹣x+6;(3)①∵点P为矩形ABCO的对称中心,∴,∵B(a,3),∴PB的中点坐标为:,∴直线PB的解析式为,∵当P,B关于AD对称,∴AD⊥PB,∴直线AD的解析式为:,∵直线AD过点,∴,解得:a=±3,∵a≥3,∴a=3;②存在M,N;理由:∵a=3,∴直线AD的解析式为y=﹣x+9,∴∴∠DAO=60°,∴∠DAB=30°,连接AE,∵AD=OA=3,DE=OC=3,∴∠EAD=30°,∴A,B,E三点共线,∴AE=2DE=6,∴,设M(m,0),N(0,n),∵四边形EFMN是平行四边形,∴,解得:,∴M(,0),N(0,).本题考查的是一次函数综合运用,涉及到正方形和等腰三角形性质、圆的基本知识,其中(2),要注意分类求解,避免遗漏.15、(1)6;(2)40或400【解析】
(1)设通道的宽x米,由图中所示可得通道面积为2×28x+2(52-2x)x,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a元,则少租出个车位,根据月租金收入为14400元列方程求出a值即可.【详解】(1)设通道的宽x米,根据题意得:2×28x+2(52-2x)x+640=52×28,整理得:x2-40x+204=0,解得:x1=6,x2=34(不符合题意,舍去).答:通道的宽是6米.(2)设每个车位的月租金上涨a元,则少租出个车位,根据题意得:(200+a)(64-)=14400,整理得:a2-440a+16000=0,解得:a1=40,a2=400.答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.16、(1)①P1,P1;②≤xE≤;(2)2≤b≤2+2或-2-2≤b≤-2.【解析】
(1)①根据画出图形,根据“中心轴对称”的定义即可判断.②以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.求出点E,点F的坐标即可判断.(2)如图3中,设GK交x轴于P.求出两种特殊位置的b的值即可判断:当一次函数y=x+b经过点G(-2,2)时,2=-2+b,b=2+2,当一次函数y=x+b经过点P(-2,0)时,0=-2+b,b=2,观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK是“中心轴对称”的.再根据对称性,求出直线与y轴的负半轴相交时b的范围即可.【详解】解:(1)如图1中,①∵OA=1,OP1=1,OP1=1,∴P1,P1与点A是“中心轴对称”的,故答案为P1,P1.②如图2中,以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.∵在正方形ABCD中,点A(1,0),点C(2,1),∴点B(1,1),∵点E在射线OB上,∴设点E的坐标是(x,y),则x=y,即点E坐标是(x,x),∵点E与正方形ABCD是“中心轴对称”的,∴当点E与点A对称时,则OE=OA=1,过点E作EH⊥x轴于点H,则OH2+EH2=OE2,∴x2+x2=12,解得x=,∴点E的横坐标xE=,同理可求点:F(,),∵E(,),F(,),∴观察图象可知满足条件的点E的横坐标xE的取值范围:≤xE≤.(2)如图3中,设GK交x轴于P.
当一次函数y=x+b经过点G(-2,2)时,2=-2+b,b=2+2,当一次函数y=x+b经过点P(-2,0)时,0=-2+b,b=2,观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK是“中心轴对称”的.根据对称性可知:当-2-2≤b≤-2时,线段MN与四边形GHJK是“中心轴对称”的.综上所述,满足条件的b的取值范围:2≤b≤2+2或-2-2≤b≤-2.本题属于一次函数综合题,考查了正方形的性质,“中心轴对称”的定义,一次函数的性质等知识,解题的关键是理解题意,学会性质特殊点特殊位置解决问题,属于中考压轴题.17、(1)50;(2)众数是B等,中位数落在C等;(3)3325人.【解析】
(1)根据A的人数除以A所占的百分,可得调查的总人数,根据有理数的减法,可得C的人数;(2)根据众数的定义,中位数的定义,可得答案;(3)根据样本估计总体,可得答案.【详解】(1)调查的总人数40÷20%=200人,C组的人数=200﹣40﹣100﹣10=50,补充如图:(2)本次调查的众数是100,即B等,中位数是=75,落在C等;(3)3500×=3325人.答:该校今年有3500名学生,达到国家规定的阅读时间的人数约有3325人.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18、(1)证明见解析;(2)证明见解析.【解析】
(1)根据一组对边平行且相等的四边形是平行四边形证明即可;(2)可证明EG和FH所在的△DEG、△BFH全等即可.【详解】解:(1)∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵E、F分别是AD、BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是平行四边形,∴CE∥AF,∴∠DGE=∠AHD=∠BHF,∵AB∥CD,∴∠EDG=∠FBH,在△DEG和△BFH中,∴△DEG≌△BFH(AAS),∴EG=FH.一、填空题(本大题共5个小题,每小题4分,共20分)19、27【解析】试题分析:首先连接DB,DE,设DE交AC于M,连接MB,DF.证明只有点F运动到点M时,EF+BF取最小值,再根据菱形的性质、勾股定理求得最小值.试题解析:连接DB,DE,设DE交AC于M,连接MB,DF,延长BA,DH⊥BA于H,∵四边形ABCD是菱形,∴AC,BD互相垂直平分,∴点B关于AC的对称点为D,∴FD=FB,∴FE+FB=FE+FD≥DE.只有当点F运动到点M时,取等号(两点之间线段最短),△ABD中,AD=AB,∠DAB=120°,∴∠HAD=60°,∵DH⊥AB,∴AH=AD,DH=32∵菱形ABCD的边长为4,E为AB的中点,∴AE=2,AH=2,∴EH=4,DH=23在RT△EHD中,DE=E∴EF+BF的最小值为27【考点】1.轴对称-最短路线问题;2.菱形的性质.20、【解析】试题解析:∵=3﹣x,
∴x-3≤0,
解得:x≤3,
21、﹣1【解析】
直接将要求值的代数式提取公因式ab,进而把已知数据代入求出答案.【详解】∵ab=-1,a+b=1,∴a1b+ab1=ab(a+b)=-1×1=-1.故答案为-1.此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.22、假设在直角三角形中,两个锐角都大于45°.【解析】
反证法的第一步是假设命题的结论不成立,据此可以得出答案.【详解】∵反证法的第一步是假设命题的结论不成立,∴用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时第一步即为,假设在直角三角形中,两个锐角都大于45°.此题主要考查了反证法的知识,解此题的关键是掌握反证法的意义和步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)由矛盾说明假设错误,从而证明原命题正确.23、1【解析】
根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO的长,即可求BO的长,根据BO的长即可求BD的长.【详解】如图,由题意知,AB=5,AC=6,∴AO=OC=3,∵菱形对角线互相垂直平分,∴△ABO为直角三角形,在Rt△ABO中,AB=5,AO=3,∴BO=AB2-A故BD=2BO=1,故答案为:1.本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)每个A型展台,每个B型展台的租用价格分别为800元、1200元;(2)B型展台最多可租用31个.【解析】
(1)首先设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,根据关键语句“用1600元租用的A型展台的数量与用2400元租用的B型展台的数量相同.”列出方程,解方程即可.(2)根据预计投入资金至多80000元,列不等式可解答.【详解】解:(1)设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,由题意得:,解得:x=800,经检验:x=800是原分式方程的解,∴B型展
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中语文教案模板
- 房地产开发公司关于某大厦酒店工程项目建设申请及可行性研究报告
- 纪检培训课程设计
- 广西南宁市2024年九年级上物理期末试卷附参考答案
- 工作抽样观测方法与实例
- 施工安全情况日常巡查表(完整版)
- 【期末测试】满分预测押题卷(B卷·能力提升练)(解析版)
- 2024年餐饮设备租赁协议详细示例版
- 电子制造业薪酬体系优化
- 演出服装租赁合同模板
- 二级公立医院绩效考核三级手术目录(2020版)
- 6人小品《没有学习的人不伤心》台词完整版
- [理学]无机及其分析化学 课后答案
- 氯碱生产企业安全标准化实施培训指南
- 活套法兰计算表
- 年产十万吨苯乙烯工艺设计
- 储罐受限空间作业方案DOC
- 压力容器耐压试验
- 课程设计---年产5.6万吨乙醇精馏塔的设计
- 部编本小学五年级上册语文期末考试(选择题)专项训练题及答案
- 化工生产车间人员配置方案(精编版)
评论
0/150
提交评论