山东省潍坊市诸城市2024年九上数学开学调研试题【含答案】_第1页
山东省潍坊市诸城市2024年九上数学开学调研试题【含答案】_第2页
山东省潍坊市诸城市2024年九上数学开学调研试题【含答案】_第3页
山东省潍坊市诸城市2024年九上数学开学调研试题【含答案】_第4页
山东省潍坊市诸城市2024年九上数学开学调研试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共4页山东省潍坊市诸城市2024年九上数学开学调研试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图4,在中,,点为斜边上一动点,过点作于点,于点,连结,则线段的最小值为A.1.2 B.2.4 C.2.5 D.4.82、(4分)分式运算正确的是()A. B.C. D.3、(4分)下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的()A.5,12,13 B.3,4,5 C.6,8,10 D.2,3,44、(4分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:选手

方差(环2)

0.035

0.016

0.022

0.025

则这四个人种成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁5、(4分)如图,在平面直角坐标系中,点在反比例函数的图象上.若,则自变量的取值范围是()A. B. C.且 D.或6、(4分)如图,矩形ABCD中,对角线AC,BD相交于点O,∠ADB=30°,E为BC边上一点,∠AEB=45°,CF⊥BD于F.下列结论:①BE=CD,②BF=3DF,③AE=AO,④CE=CF.正确的结论有()A.①② B.②③ C.①②④ D.①②③7、(4分)下列几何图形是中心对称图形的是()A. B. C. D.8、(4分)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A.0.1 B.0.17 C.0.33 D.0.4二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知,如图,正方形ABCD的面积为25,菱形PQCB的面积为20,则阴影部分的面积为________.10、(4分)如图在平面直角坐标系中,A4,0,B0,2,以AB为边作正方形ABCD,则点C的坐标为11、(4分)某校九年级甲、乙两班举行电脑汉字输入比赛,两个班能参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是_______(填序号).12、(4分)如图,四边形ABCD是正方形,△EBC是等边三角形,则∠AED的度数为_________.13、(4分)若函数y=,则当函数值y=8时,自变量x的值等于_____.三、解答题(本大题共5个小题,共48分)14、(12分)先化简,再求值:(,其中15、(8分)已知点A及第一象限的动点,且,设△OPA的面积为S.(1)求S关于的函数解析式,并写出的取值范围;(2)画出函数S的图象,并求其与正比例函数的图象的交点坐标;(3)当S=12时,求P点坐标.16、(8分)在▱ABCD中,点E为AB边的中点,连接CE,将△BCE沿着CE翻折,点B落在点G处,连接AG并延长,交CD于F.(1)求证:四边形AECF是平行四边形;(2)若CF=5,△GCE的周长为20,求四边形ABCF的周长.17、(10分)(1)如图1,四边形ABCD是平行四边形,E为BC上任意一点,请仅用无刻度直尺,在边AD上找点F,使.(2)如图2,四边形ABCD是菱形,E为BC上任意一点,请仅用无刻度直尺,在边DC上找点M,使.18、(10分)某学校为了了解男生的体能情况,规定参加测试的每名男生从“实心球”,“立定跳远”,“引体向上”,“耐久跑1000米”四个项目中随机抽取一项作为测试项目.(1)八年(1)班的25名男生积极参加,参加各项测试项目的统计结果如图,参加“实心球”测试的男生人数是人;(2)八年(1)班有8名男生参加了“立定跳远”的测试,他们的成绩(单位:分)如下:95,100,82,90,89,90,90,85①“95,100,82,90,89,90,90,85”这组数据的众数是,中位数是.②小聪同学的成绩是92分,他的成绩如何?③如果将不低于90分的成绩评为优秀,请你估计八年级80名男生中“立定跳远”成绩为优秀的学生约为多少人?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若关于x的方程无解,则m=.20、(4分)用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____21、(4分)若代数式有意义,则x的取值范围是______。22、(4分)若﹣1的整数部分是a,小数部分是b,则代数式a2+2b的值是_____.23、(4分)如下图,用方向和距离表示火车站相对于仓库的位置是__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在方格纸中,线段AB的两个端点都在小方格的格点上,分别按下列要求画格点四边形.在图甲中画一个以AB为对角线的平行四边形.在图乙中画一个以AB为边的矩形.25、(10分)几何学的产生,源于人们对土地面积测量的需要,以面积早就成为人们认识图形性质与几何证明的有效工具,可以说几何学从一开始便与面积结下了不解之缘.我们已经掌握了平行四边形面积的求法,但是一般四边形的面积往往不易求得,那么我们能否将其转化为平行四边形来求呢?(1)方法1:如图①,连接四边形的对角线,,分别过四边形的四个顶点作对角线的平行线,所作四条线相交形成四边形,易证四边形是平行四边形.请直接写出S四边形ABCD和之间的关系:_______________.方法2:如图②,取四边形四边的中点,,,,连接,,,,(2)求证:四边形是平行四边形;(3)请直接写出S四边形ABCD与之间的关系:_____________.方法3:如图③,取四边形四边的中点,,,,连接,交于点.先将四边形绕点旋转得到四边形,易得点,,在同一直线上;再将四边形绕点旋转得到四边形,易得点,,在同一直线上;最后将四边形沿方向平移,使点与点重合,得到四边形;(4)由旋转、平移可得_________,_________,所以,所以点,,在同一直线上,同理,点,,也在同一点线上,所以我们拼接成的图形是一个四边形.(5)求证:四边形是平行四边形.(注意:请考生在下面2题中任选一题作答如果多做,则按所做的第一题计分)(6)应用1:如图④,在四边形中,对角线与交于点,,,,则S四边形ABCD=.(7)应用2:如图⑤,在四边形中,点,,,分别是,,,的中点,连接,交于点,,,,则S四边形ABCD=___________26、(12分)小王开车从甲地到乙地,去时走A线路,全程约100千米,返回时走B路线,全程约60千米.小王开车去时的平均速度比返回时的平均速度快20千米/小时,所用时间却比返回时多15分钟.若小王返回时的平均车速不低于70千米/小时,求小王开车返回时的平均速度.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

连接PC,证明四边形PECF是矩形,从而有EF=CP,当CP⊥AB时,PC最小,利用三角形面积解答即可.【详解】解:连接PC,

∵PE⊥AC,PF⊥BC,

∴∠PEC=∠PFC=∠C=90°,

∴四边形ECFP是矩形,

∴EF=PC,

∴当PC最小时,EF也最小,

即当CP⊥AB时,PC最小,

∵AC=1,BC=3,

∴AB=5,

∴PC的最小值为:∴线段EF长的最小值为2.1.

故选B.本题考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.2、C【解析】

根据分式的运算法则即可判断.【详解】A.,故错误;B.,故错误;C.,正确D.,故错误故选C此题主要考查分式的运算,解题的关键是熟知分式的性质.3、D【解析】

欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、52+122=132,能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故不符合题意;C、62+82=102,能构成直角三角形,故不符合题意;D、22+32≠42,不能构成直角三角形,故符合题意.故选:D.本题考查勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.4、B【解析】

方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.【详解】解:∵S甲2,=0.035,S乙2=0.016,S,丙2=0.022,S,丁2=0.025,∴S乙2最小.∴这四个人种成绩发挥最稳定的是乙.故选B.5、D【解析】

首先根据点坐标求出函数解析式,然后列出不等式,反比例函数自变量不为0,分两类讨论,即可解题.【详解】解:由已知条件,将点代入反比例函数解析式,可得,即函数解析式为∵∴∴当时,解得;当时,解得,即,∴的取值范围是或故答案为D.此题主要考查反比例函数和不等式的性质,注意要分类讨论.6、D【解析】

根据矩形的性质,由∠ADB=30°可得,△AOB和△COD都是等边三角形,再由∠AEB=45°,可得△ABE是等腰直角三角形,其边有特殊的关系,利用等量代换可以得出③AE=AO是正确的,①BE=CD是正确的,在正△COD中,CF⊥BD,可得DF=CD,再利用等量代换可得②BF=3DF是正确的,利用选项的排除法确定选项D是正确的.【详解】解:∵四边形ABCD是矩形,

∴AB=CD,AD=BC,AC=BD,AO=CO=BO=DO,∠ABC=∠ADC=∠BAD=∠BCD=90°,

∵∠AEB=45°,

∴∠BAE=∠AEB=45°

∴AB=BE=CD,AE=AB=CD,

故①正确,

∵∠ADB=30°,

∴∠ABO=60°且AO=BO,

∴△ABO是等边三角形,

∴AB=AO,

∴AE=AO,

故③正确,

∵△OCD是等边三角形,CF⊥BD,

∴DF=FO=OD=CD=BD,

∴BF=3DF,

故②正确,

根据排除法,可得选项D正确,

故选:D.考查矩形的性质,含有30°角的直角三角形的特殊的边角关系、等边三角形的性质和判定等知识,排除法可以减少对④的判断,从而节省时间.7、D【解析】

根据中心对称图形的定义判断即可.【详解】A、图形不是中心对称图形;B、图形不是中心对称图形;C、图形不是中心对称图形;D、图形是中心对称图形;故选D.本题考查的是中心对称图形的定义,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,8、D【解析】

首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总人数30,即可得到仰卧起坐次数在25~30之间的频率.【详解】解:∵从频数分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.1.故选:D.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.【详解】∵正方形ABCD的面积是25,∴AB=BC=BP=PQ=QC=5,又∵S菱形PQCB=PQ×EC=5×EC=20,∴S菱形PQCB=BC•EC,即20=5•EC,∴EC=4,在Rt△QEC中,EQ==3;∴PE=PQ-EQ=2,∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.故答案为1.此题主要考查了菱形的性质和面积计算以及正方形的性质,根据已知得出EC=8,进而求出EQ的长是解题关键.10、2,6或-2,-2【解析】

当点C在AB上方时,过点C作CE⊥y轴于点E,易证△AOB≌△BEC(AAS),根据全等三角形的性质可得BE=AO=4,EC=OB=2,从而得到点C的坐标为(2,6),同理可得当点C在AB下方时,点C的坐标为:(-2,-2).【详解】解:如图所示,当点C在AB上方时,过点C作CE⊥y轴于点E,∵A4,0,B0,2,四边形∴∠BEC=∠AOB=90°,BC=AB,∵∠BCE+∠EBC=90°,∠OBA+∠EBC=90°,∴∠BCE=∠OBA,∴△AOB≌△BEC(AAS),∴BE=AO=4,EC=OB=2,∴OE=OB+BE=6,∴此时点C的坐标为:(2,6),同理可得当点C在AB下方时,点C的坐标为:(-2,-2),综上所述,点C的坐标为:2,6或-2,-2故答案为:2,6或-2,-2.本题主要考查坐标与图形以及三角形全等的判定和性质,注意分情况讨论,不要漏解.11、①②③.【解析】

根据平均数、方差和中位数的意义,可知:甲乙的平均数相同,所以①甲、乙两班学生的平均水平相同.根据中位数可知乙的中位数大,所以②乙班优秀的人数比甲班优秀的人数多.根据方差数据可知,方差越大波动越大,反之越小,所以甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.

故答案为①②③.本题考查统计知识中的中位数、平均数和方差的意义.要知道平均数和中位数反映的是数据的集中趋势,方差反映的是离散程度.12、150【解析】

根据题意先得出AB=BC=BE,EC=BC=DC,并以此求出∠AEB和∠DEC,进而利用∠AED=360°-∠AEB-∠DEC-∠BEC即可求出∠AED的度数.【详解】解:∵四边形ABCD是正方形,△EBC是等边三角形,∴AB=BC=BE,EC=BC=DC,∠ABE=∠DCE=90°-60°=30°,∴∠AEB=∠EAB=(180°-30°)÷2=75°,∴∠DEC=∠EDC=(180°-30°)÷2=75°,∴∠AED=360°-∠AEB-∠DEC-∠BEC=360°-75°-75°-60°=150°.故答案为:150°.本题考查正方形的性质以及等腰、等边三角形的性质,熟练掌握相关的性质是解题的关键.13、或4【解析】【分析】把y=8,分别代入解析式,再解方程,要注意x的取值范围.【详解】由已知可得x2+2=8或2x=8,分别解得x1=(不符合题意舍去),x2=-,x3=4故答案为或4【点睛】本题考核知识点:求函数值.解题关键点:注意x的取值范围.三、解答题(本大题共5个小题,共48分)14、,.【解析】

先根据分式混合运算的法则把原式进行化简,再把a=1+代入进行计算即可【详解】解:原式===,当a=1+时,=.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.15、(1)S=-4x+40(0<x<10);(2)(,);(3)P(7,3)【解析】

(1)根据△OAP的面积=OA×y÷2列出函数解析式,及点P(x,y)在第一象限内求出自变量的取值范围.(2)根据S=-4x+40画出函数图像,并与正比例函数S=2x联立方程组,即可求出交点坐标.(3)将S=12代入(1)求出的解析式中即可.【详解】解:(1)依题意有S=×8×(10-x)=-4x+40,

∵点P(x,y)在第一象限内,

∴x>0,y=10-x>0,

解得:0<x<10,

故关于x的函数解析式为:S=-4x+40(0<x<10);(2)∵解析式为S=-4x+40(0<x<10);

∴函数图象经过点(10,0)(0,40)(但不包括这两点的线段).

所画图象如下:令,解得,所以交点坐标为(,);(3)将S=12代入S=-4x+40,得:12=-4x+40,

解得:x=7,故点P(7,3).本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.16、(1)见解析;(2)1【解析】

(1)由平行四边形的性质得出AE∥FC,再由三角形的外角的性质,以及折叠的性质,可以证明∠FAE=∠CEB,进而证明AF∥EC,即可得出结论;(2)由折叠的性质得:GE=BE,GC=BC,由△GCE的周长得出GE+CE+GC=20,BE+CE+BC=20,由平行四边形的性质得出AF=CE,AE=CF=5,即可得出结果.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AE∥FC,∵点E是AB边的中点,∴AE=BE,∵将△BCE沿着CE翻折,点B落在点G处,∴BE=GE,∠CEB=∠CEG,∴AE=GE,∴∠FAE=∠AGE,∵∠CEB=∠CEG=∠BEG,∠BEG=∠FAE+∠AGE,∴∠FAE=∠BEG,∴∠FAE=∠CEB,∴AF∥EC,∴四边形AECF是平行四边形;(2)解:由折叠的性质得:GE=BE,GC=BC,∵△GCE的周长为20,∴GE+CE+GC=20,∴BE+CE+BC=20,∵四边形AECF是平行四边形,∴AF=CE,AE=CF=5,∴四边形ABCF的周长=AB+BC+CF+AF=AE+BE+BC+CE+CF=5+20+5=1.本题主要考查了翻折变换的性质、平行四边形的判定与性质、平行线的判定、等腰三角形的性质以及三角形的外角性质等知识;熟练掌握翻折变换的性质,证明四边形AECF是平行四边形是解题的关键.17、(1)答案见解析;(2)答案见解析.【解析】

(1)先连接AC、BD,再连接对角线交点O与E点与DA的交点F即为所求;(2)连接AC,DE交于点O,再连接O点与B点交CD于M点,M点即为所求.【详解】解:(1)如下图,点F即为所求:(2)如下图,点M即为所求:本题考查的是无刻度尺规作图,主要用到的知识点为三角形全等的判定与性质.18、(1)7;(2)①90;90;②小聪同学的成绩处于中等偏上;③有50人.【解析】

(1)由统计结果图即可得出结果;(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.【详解】(1)由统计结果图得:参加“实心球”测试的男生人数是7人,故答案为:7;(2)①将95,100,82,90,89,90,90,85这组数据由小到大排列:82,85,89,90,90,90,95,100;根据数据得:众数为90,中位数为90,故答案为:90;90;②8名男生平均成绩为:=90.125,∵92>90.125,∴小聪同学的成绩处于中等偏上;③8名男生中达到优秀的共有5人,根据题意得:×80=50(人),则估计八年级80名男生中“立定跳远”成绩为优秀的学生约为50人.本题考查了众数、中位数、平均数、用样本估计总体等知识,熟练掌握众数、中位数、平均数的概念是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、﹣8【解析】

试题分析:∵关于x的方程无解,∴x=5将分式方程去分母得:,将x=5代入得:m=﹣8【详解】请在此输入详解!20、等腰三角形的底角是钝角或直角【解析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.

故答案是:等腰三角形的两底都是直角或钝角.21、x>5【解析】

若代数式有意义,则分母即≠0,可得出x≠5.根据根式的性质能够得出x-5≥0,结合前面x≠5,即可得出x的取值范围.【详解】若代数式有意义,则≠0,得出x≠5.根据根式的性质知中被开方数x-5≥0则x≥5,由于x≠5,则可得出x>5,答案为x>5.本题主要考查分式及根式有意义的条件,易错点在于学生容易漏掉其中之一.22、1+2【解析】

先估算出的范围,再求出a,b的值,代入即可.【详解】解:∵16<23<25,∴1<<5,∴3<﹣1<1.∴a=3,b=﹣1.∴原式=32+2(﹣1)=9+2﹣8=1+2.故答案为:1+2.本题考查的是估算无理数的大小,熟练掌握无理数的性质是解题的关键.23、东偏北20°方向,距离仓库50km【解析】

根据方位角的概念,可得答案.【详解】解:火车站相对于仓库的位置是东偏北20°方向,距离仓库50km,故答案为:东偏北20°方向,距离仓库50km.本题考查了方向角的知识点,解答本题的关键是注意是火车站在仓库的什么方向.二、解答题(本大题共3个小题,共30分)24、(1)作图见解析;(2)作图见解析.【解析】

直接利用平行四边形的性质得出符合题意的图形;直接利用矩形的性质得出符合题意的图形.【详解】如图甲所示:四边形ACBD是平行四边形;如图乙所示:四边形ABCD是矩形.此题主要考查了应用设计与作图,正确把握平行四边形以及矩形的性质是解题关键.25、(1)S四边形ABCD;(2)见详解;(1)S四边形ABCD;(4)AEO,OEB;(5)见详解;(6);(7)【解析】

(1)先证四边形AEBO,四边形BFCO,四边形CGDO,四边形DHAO都是平行四

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论