山西省运城市夏县2024年九年级数学第一学期开学联考试题【含答案】_第1页
山西省运城市夏县2024年九年级数学第一学期开学联考试题【含答案】_第2页
山西省运城市夏县2024年九年级数学第一学期开学联考试题【含答案】_第3页
山西省运城市夏县2024年九年级数学第一学期开学联考试题【含答案】_第4页
山西省运城市夏县2024年九年级数学第一学期开学联考试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页山西省运城市夏县2024年九年级数学第一学期开学联考试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,▱ABCD的对角线AC,BD交于点O,E为AB的中点,G为BC延长线上一点,射线EO与∠ACG的角平分线交于点F,若AC=5,BC=6,则线段EF的长为()A.5 B. C.6 D.72、(4分)实数的绝对值是()A. B. C. D.13、(4分)一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.24、(4分)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm5、(4分)如图,中,是边的中点,平分于已知则的长为()A. B.C. D.6、(4分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则两次降价的平均百分率为()A.10% B.15% C.20% D.25%7、(4分)不等式组有3个整数解,则的取值范围是()A. B. C. D.8、(4分)下列说法正确的是()A.了解某型导弹杀伤力的情况应使用全面调查B.一组数据3、6、6、7、9的众数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2甲=0.3,S2乙=0.4,则乙的成绩更稳定二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若实数x,y满足+,则xy的值是______.10、(4分)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为______.11、(4分)如图,在平行四边形中,,的平分线交于点,连接,若,则平行四边形的面积为__________.12、(4分)有一组数据如下:

2,

2,

0,1,

1.那么这组数据的平均数为__________,方差为__________.13、(4分)直线与轴的交点坐标___________三、解答题(本大题共5个小题,共48分)14、(12分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面直角坐标系,已知△ABC的三个顶点都在格点上。(1)请作出△ABC关于x轴对称的△A′B′C′,并分别写出点A′,B′,C′的坐标。(2)在格点上是否存在一点D,使A,B,C,D四点为顶点的四边形是平行四边形,若存在,直接写出D点的坐标(只需写出一点即可)。15、(8分)下岗职工王阿姨利用自己的﹣技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.(1)问服装厂有哪几种生产方案?(2)按照(1)中方案生产,服装全部售出至少可获得利润多少元?(3)在(1)的条件下,服装厂又拿出6套服装捐赠给某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种方案生产的.16、(8分)(1)计算:(2)解方程:-1=17、(10分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).18、(10分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是______.20、(4分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M是BC边上一个动点,联结AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转恰好至△NGF.给出以下三个结论:①∠AND=∠MPC;②△ABM≌△NGF;③S四边形AMFN=a1+b1.其中正确的结论是_____(请填写序号).21、(4分)计算__________.22、(4分)如图①,如果A1、A2、A3、A4把圆周四等分,则以A1、A2、A3、A4为顶点的直角三角形4个;如图②,如果A1、A2、A3、A4、A5、A6把圆周六等分,则以A1、A2、A3、A4、A5、A6为点的直角三角形有12个;如果A1、A2、A3、……A2n把圆周2n等分,则以A1、A2、A3、…A2n为顶点的直角三角形有__________个,23、(4分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,将边长为4的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△ABC.(1)当两个三角形重叠部分的面积为3时,求移动的距离AA;(2)当移动的距离AA是何值时,重叠部分是菱形.25、(10分)在平行四边形中,于E,于F.若,平行四边形周长为40,求平行四边形的面积.26、(12分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点坐标为.(1)画出关于轴对称的;(2)画出将绕原点逆时针旋转90°所得的;(3)与能组成轴对称图形吗?若能,请你画出所有的对称轴.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

只要证明OF=OC,再利用三角形的中位线定理求出EO即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC=,∵AE=EB,∴EF∥BC,OE=BC=3,∴∠F=∠FCG,∵∠FCG=∠FCO,∴∠F=∠FCO,∴OF=OC=,∴EF=EO+OF=,故选B.本题考查平行四边形的性质、三角形的中位线定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、B【解析】

解:|故选B3、B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.故选B.4、C【解析】试题分析:解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为C.考点:平行四边形的性质.5、A【解析】

延长BE交AC于F,由三线合一定理,得到△ABF是等腰三角形,则AF=AB=10,BE=EF,根据三角形中位线定理计算即可.【详解】解:延长交于点.,平分,为等腰三角形.,E为的中点又为的中点为的中位线,故选:A.本题考查的是三角形中位线定理、三线合一定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.6、C【解析】

根据商品的原来的价格(1-每次降价的百分数)2=现在的价格,设出未知数,列方程求解即可.【详解】解:设这种商品平均每次降价的百分率为x根据题意列方程得:解得(舍)故选C.本题主要考查一元二次方程的应用,关键在于根据题意列方程.7、B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣1.故选B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.8、B【解析】

直接利用方差的意义以及全面调查与抽样调查、众数的定义分别分析得出答案.【详解】解:A、了解某型导弹杀伤力的情况应使用抽样调查,故此选项错误;

B、一组数据3、6、6、7、9的众数是6,正确;

C、从2000名学生中选200名学生进行抽样调查,样本容量为200,故此选项错误;

D、甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2甲=0.3,S2乙=0.4,则甲的成绩更稳定,故此选项错误;

故选B.此题主要考查了方差的意义以及全面调查与抽样调查、众数的定义,正确把握相关定义是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【详解】因为,所以=0,,解得:=-2,=,所以=(-2)×=-2.故答案为-2.本题考查非负数的性质-算术平方根,非负数的性质-偶次方.10、.【解析】

试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴An(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点An+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=.故答案为.考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.11、【解析】

根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据证明BC=BE,由此根据三角形的三线合一及勾股定理求出BF,即可求出平行四边形的面积.【详解】过点作于点,如图所示.∵是的平分线,∴.∵四边形是平行四边形,∴,∴,∴,∴,∴.∵,∴,∴BC=BE,∴,∴.∴平行四边形的面积为.故答案为:.此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.12、11【解析】分析:先算出数据的平均数,再根据方差的计算公式,代入公式计算即可得到结果.详解:平均数为:(-2+2+0+1+1)÷5=1,=,故答案为1,1.点睛:本题考查了平均数与方差的应用,先求出这组数据的平均数,再根据方差公式进行计算即可.13、(0,-3)【解析】

求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.【详解】解:由题意得:当x=0时,y=2×0-3=-3,即直线与y轴交点坐标为(0,-3),故答案为(0,-3).本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.三、解答题(本大题共5个小题,共48分)14、(1)A(-3,-4),B'(-1,-1);(2)D1(4,0),D2(-6,2),D3(0,6)【解析】

(1)分别作A、B、C关于x轴对称的点A‘、B’、C‘,然后顺次把这三点连接起来即可;由图直接读出A’、B‘、C’的坐标即可;(2)分别以BC、AB、AC为对角线作平行四边形,得到D1、D2、D3,由图读出D1、D2、D3坐标即可.【详解】(1)解:如图所示,△A'B′C′即为所求,A(-3,-4),B'(-1,-1),C(2,-3)(2)解:如图所示,D1(4,0),D2(-6,2),D3(0,6)(只需写出一点即可)此题主要考查图形与坐标,解题的关键是熟知平行四边形的性质.15、(1)生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;(2)至少可获得利润266元;(3)生产甲型服装16套,乙型服装24套【解析】试题分析:(1)根据题意设甲型服装x套,则乙型服装为(40-x)套,由已知条件列不等式1536≤34x+42(40-x)≤1552进行解答即求出所求结论;(2)根据每种型号的利润和数量都已说明,需求出总利润,根据一次函数的性质即可得到利润最小值;(3)设捐出甲型号m套,则有39(甲-m)+50[乙-(6-m)]-34甲-42乙=27,整理得5甲+8乙+11m=327,又(1)得,甲可以=16、17、1,而只有当甲=16套时,m=5为整数,即可得到服装厂采用的方案.试题解析:(1)解:设甲型服装x套,则乙型服装为(40﹣x)套,由题意得1536≤34x+42(40﹣x)≤1552,解得16≤x≤1,∵x是正整数,∴x=16或17或1.有以下生产三种方案:生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;(2)解:设所获利润为y元,由题意有:y=(39﹣34)x+(50﹣42)(40﹣x)=﹣3x+320,∵y随x的增大而减小,∴x=1时,y最小值=266,∴至少可获得利润266元(3)解:服装厂采用的方案是:生产甲型服装16套,乙型服装24套.16、(1)3+2;(2)原方程无解【解析】

(1)利用乘法公式展开,然后合并即可;(2)先去分母把方程化为(x-2)2-(x+2)(x-2)=16,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式=5+5-3-2=3+2;(2)去分母得(x-2)2-(x+2)(x-2)=16,解得x=-2,检验:当x=-2时,(x+2)(x-2)=0,则x=-2为原方程的增根,所以原方程无解.本题考查了二次根式的混合运算及分式方程的解法:先进行二次根式的乘法运算,再合并同类二次根式即可.解分式方程最关键的是把分式方程化为整式方程.17、1【解析】试题分析:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==1(米).故答案为1.考点:相似三角形的应用.18、7200元【解析】

仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.【详解】连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=⋅AD⋅AB+DB⋅BC=×4×3+×12×5=36.所以需费用36×200=7200(元).此题考查勾股定理的应用,解题关键在于作辅助线和利用勾股定理进行计算.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有12个,而能构成一个轴对称图形的有2个情况(如图所示)∴使图中黑色部分的图形构成一个轴对称图形的概率是.20、①②③.【解析】

①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,可知∠DAM=∠AND,②根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;③由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM1=a1+b1;【详解】①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确,②∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,AB=NG=a,∠B=∠NGF=90°,GF=BM=b,∴△ABM≌△NGF;故②正确;③∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a1+b1=AM1,∴S四边形AMFN=AM1=a1+b1;故③正确故答案为①②③.本题考查了全等三角形的判定和性质,正方形的性质,旋转的性质,正确的理解题意是解题的关键.21、【解析】

将化成最简二次根式,再合并同类二次根式.【详解】解:故答案为:本题考查了二次根式的运算,运用二次根式的乘除法法则进行二次根式的化简是解题的关键.22、2n(n-1)【解析】

根据圆周角定理找到直径所对的圆周角是直角,然后由一条直径所对的直角数来寻找规律.【详解】解:由圆周角定理知,直径所对的圆周角是直角.

∴当A1、A2、A3、A4把圆周四等分时,该圆中的直径有A1A3,A2A4两条,

∴①当以A1A3为直径时,有两个直角三角形;

②当以A2A4为直径时,有两个直角三角形;

∴如果A1、A2、A3、A4把圆周四等分,则以A1、A2、A3、A4为顶点的直角三角形有(4÷2)×(4-2)=4个;

当A1、A2、A3、A4、A5、A6把圆周六等分,则以A1、A2、A3、A4、A5、A6为顶点的直角三角形有(6÷2)×(6-2)=12个;

当A1、A2、A3、…A2n把圆周2n等分,则以A1、A2、A3、…A2n为顶点的直角三角形有(2n÷2)×(2n-2)=2n(n-1)个.

故答案是:2n(n-1).本题考查圆周角定理:直径所对的圆周角是直角.解答该题是关键是根据直径的条数、顶点的个数来寻找规律.23、1【解析】试题解析:∵a是一元二次方程x2-1x+m=0的一个根,-a是一元二次方程x2+1x-m=0的一个根,∴a2-1a+m=0①,a2-1a-m=0②,①+②,得2(a2-1a)=0,∵a>0,∴a=1.考点:一元二次方程的解.二、解答题(本大题共3个小题,共30分)24、(1)AA=1或3;(2)AA=8-42【解析】

(1)根据平移的性质,结合阴影部分是平行四边形,设AA′=x,AC与A′B′相交于点E,则A′D=4-x,△AA′E是等腰直角三角形,根据平行四边形的面积公式即可列出方程求解;(2)设AC与CD交于点F,当四边形A′ECF是菱形时,有A′E=A′F,设AA′=x,则A′E=x,A′D=4-x,再由A′F=2A′D,可得方程x=2(4-x)【详解】(1)设AA′=x,AC与A′B′相交于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论