版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共12页山西省临汾平阳2024-2025学年数学九年级第一学期开学复习检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7 B.8 C.7 D.72、(4分)若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A. B. C. D.3、(4分)下列各式:中,是分式的有()A.1个 B.2个 C.3个 D.4个4、(4分)下列函数中,是正比例函数的是()A. B. C. D.5、(4分)下列表格是二次函数的自变量x与函数值y的对应值,判断方程(为常数)的一个解x的范围是x…6.176.186.196.20……-0.03-0.010.020.04…A. B.C. D.6、(4分)以下列各组数为边长,能组成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,6 D.1,,27、(4分)已知函数y=2x+k﹣1的图象不经过第二象限,则()A.k<1 B.k>1 C.k≥1 D.k≤18、(4分)如图,长方形ABCD的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形,则阴影部分面积是()A.12 B.10 C.8 D.6二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)方程的根为________.10、(4分)已知,是关于的一元二次方程的两个实根,且满足,则的值等于__________.11、(4分)已知,则的值等于__________.12、(4分)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为_____.13、(4分)已知.若整数满足.则=_________.三、解答题(本大题共5个小题,共48分)14、(12分)因式分解:(1)a(m﹣1)+b(1﹣m).(1)(m1+4)1﹣16m1.15、(8分)在校园手工制作活动中,甲、乙两人接到手工制作纸花任务,已知甲每小时制作纸花比乙每小时制作纸花少20朵,甲制作120朵纸花的时间与乙制作160朵纸花的时间相同(1)求甲、乙两人每小时各制作纸花多少朵?(2)本次活动学校需要该种纸花不少于350朵,若由甲、乙两人共同制作,则至少需要几小时完成任务?16、(8分)如图,在平面直角坐标系中,点A的坐标为(﹣6,0),点B在y轴正半轴上,∠ABO=30°,动点D从点A出发沿着射线AB方向以每秒3个单位的速度运动,过点D作DE⊥y轴,交y轴于点E,同时,动点F从定点C(1,0)出发沿x轴正方向以每秒1个单位的速度运动,连结DO,EF,设运动时间为t秒.(1)当点D运动到线段AB的中点时.①t的值为;②判断四边形DOFE是否是平行四边形,请说明理由.(2)点D在运动过程中,若以点D,O,F,E为顶点的四边形是矩形,求出满足条件的t的值.17、(10分)(1)如图(1),已知:正方形ABCD的对角线交于点O,E是AC上的一动点,过点A作AG⊥BE于G,交BD于F.求证:OE=OF.(2)在(1)的条件下,若E点在AC的延长线上,以上结论是否成立,为什么?18、(10分)一次函数(a为常数,且).(1)若点在一次函数的图象上,求a的值;(2)当时,函数有最大值2,请求出a的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知反比例函数y=(k≠0)的图象在第二、四象限,则k的值可以是:____(写出一个满足条件的k的值).20、(4分)分式的最简公分母为_____.21、(4分)已知α、β是一元二次方程x2﹣2019x+1=0的两实根,则代数式(α﹣2019)(β﹣2019)=_____.22、(4分)函数y=-6x+8的图象,可以看作由直线y=-6x向_____平移_____个单位长度而得到.23、(4分)某种细菌的直径约为0.00000002米,用科学记数法表示该细菌的直径约为____米.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在中,,,D是AB边上一点点D与A,B不重合,连结CD,将线段CD绕点C按逆时针方向旋转得到线段CE,连结DE交BC于点F,连接BE.求证:≌;当时,求的度数.25、(10分)自年月日日起,合肥市进入冰雪灾害天气,如图,一棵大树在离地面米处折断,树的顶端落在离树干底部米处,求这棵树折断之前的高度.26、(12分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
12和5为两条直角边长时,求出小正方形的边长7,即可利用勾股定理得出EF的值.【详解】∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12-5=7,∴EF=;故选C.本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.2、B【解析】试题分析:∵一次函数y=kx+b的图象经过一、二、四象限∴k<0,b>0∴直线y=bx-k经过一、二、三象限考点:一次函数的性质3、D【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:是分式,共4个故选:D.本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.4、C【解析】
根据正比例函数的定义逐一判断即可.【详解】A.不符合y=kx(k为常数且k≠0),故本选项错误;B.是一次函数但不是正比例函数,故本选项错误;C.是正比例函数,故本选项正确;D.自变量x的次数是2,不符合y=kx(k为常数且k≠0),故本选项错误;故选:C.本题考查了正比例函数的定义,掌握正比例函数的定义是解题的关键.5、C【解析】利用二次函数和一元二次方程的性质.由表格中的数据看出-0.01和0.02更接近于0,故x应取对应的范围.故选C.6、D【解析】
根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.【详解】解:A、12+22=5≠32,故不符合题意;B、22+32=13≠42,故不符合题意;C、32+42=25≠62,故不符合题意;D、12+=4=22,符合题意.故选D.本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.7、D【解析】
根据函数y=2x+k﹣1的图象不经过第二象限,可以得到k﹣1≤0,从而可以得到k的取值范围,本题得以解决.【详解】解:∵函数y=2x+k﹣1的图象不经过第二象限,∴k﹣1≤0,解得,k≤1,故选:D.本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.8、C【解析】
利用平移的性质得到AB∥A′B′,BC∥B′C′,则A′B′⊥BC,延长A′B′交BC于F,AD交A′B′于E,CD交B′C′于G,根据平移的性质得到FB′=2,AE=2,易得四边形ABFE、四边形BEDG都为矩形,然后计算出DE和B′E后可得到阴影部分面积.【详解】解:∵长方形ABCD先向上平移2个单位,再向右平移2个单位得到长方形A′B′C′D′,
∴AB∥A′B′,BC∥B′C′,
∴A′B′⊥BC,
延长A′B′交BC于F,AD交A′B′于E,CD交B′C′于G,
∴FB′=2,AE=2,
易得四边形ABFE、四边形BEDG都为矩形,
∴DE=AD-AE=6-2=4,B′E=EF-B′F=AB-B′F=4-2=2,
∴阴影部分面积=4×2=1.
故选C.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
运用因式分解法可解得.【详解】由得故答案为:考核知识点:因式分解法解一元二次方程.10、-1【解析】
根据根的存在情况限定△≥0;再将根与系数的关系代入化简的式子x1•x2+2(x2+x1)+4=13,即可求解;【详解】解:∵x1,x2是关于x一元二次方程x2+(3a−1)x+2a2−1=0的两个实根,∴△=a2−6a+5≥0∴a≥5或a≤1;∴x1+x2=−(3a−1)=1−3a,x1•x2=2a2−1,∵(x1+2)(x2+2)=13,∴整理得:x1•x2+2(x2+x1)+4=13,∴2a2−1+2(1−3a)+4=13,∴a=4或a=−1,∴a=−1;故答案为−1.本题考查一元二次方程根与系数的关系;熟练掌握根与系数的关系,一元二次方程的解法是解题的关键.11、3【解析】
将已知的两式相乘即可得出答案.【详解】解:∵∴∴的值等于3.本题主要考查了因式分解的解法:提公因式法.12、1【解析】
根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】在Rt△ABC中,∠A=30°,BC=1,∴AB=2BC=2,∵点D,E分别是直角边BC,AC的中点,∴DE=AB=1,故答案为:1.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.13、2【解析】
根据题意可知m-3≤0,被开方数是非负数列不等式组可得m的取值,又根据,表示m的值代入不等式的解集中可得结论.【详解】解:,∴解得:.∵为整数,.∴∴故答案为:2;本题考查了二次根式的性质和估算、不等式组的解法,有难度,能正确表示m的值是本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)(m﹣1)(a﹣b);(1)(m+1)1(m﹣1)1.【解析】
(1)直接提取公因式(m+1),进而得穿答案:(1)利用平方差公式进行因式分解【详解】解:(1)a(m﹣1)+b(1﹣m)=(m﹣1)(a﹣b);(1)原式=(m1+4+4m)(m1+4﹣4m)=(m+1)1(m﹣1)1.本题考查提公因式与公式法的综合运用,解题关键在于掌握运算法则15、(1)甲每小时制作纸花60朵,每小时制作纸花80朵;(2)至少需要2.5小时完成任务.【解析】
(1)根据“甲制作120朵纸花的时间与乙制作160朵纸花的时间相同”列方程求解即可;(2)根据“不少于350朵”列出不等式求解即可.【详解】(1)设乙每小时制作纸花朵,根据题意,得解得x=80经检验,x=80是原方程的解.,∴甲每小时制作纸花60朵,每小时制作纸花80朵.(2)设需要小时完成任务,根据题意,得解得y≥2.5∴至少需要2.5小时完成任务.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.16、(1)①2s,②是平行四边形,见解析;(2)14秒【解析】
(1)①由直角三角形的性质得出AB=2OA=12,由题意得出BD=AD=AB=6,列方程即可得出答案;②求出OF=OC+CF=3,由三角形中位线定理DE=BD=3,得出DE=OF,即可得出四边形DOFE是平行四边形;(2)要使以点D,O,F,E为顶点的四边形是矩形,则点D在射线AB上,求出BD=3t﹣12,由直角三角形的性质得出DE=BD=t﹣6,OF=1+t,得出方程,解方程即可.【详解】解:(1)如图1,①∵点A的坐标为(﹣6,0),∴OA=6,Rt△ABO中,∠ABO=30°,∴AB=2AO=12,由题意得:AD=3t,当点D运动到线段AB的中点时,3t=6,∴t=2,故答案为:2s;②四边形DOFE是平行四边形,理由是:∵DE⊥y轴,AO⊥y轴,∴DE∥AO,∵AD=BD,∴BE=OE,∴DE=AO=3,∵动点F从定点C(1,0)出发沿x轴正方向以每秒1个单位的速度运动,且t=2,∴OF=1+2=3=DE,∴四边形DOFE是平行四边形;(2)要使以点D,O,F,E为顶点的四边形是矩形,则点D在射线AB上,如图2所示:∵AD=3t,AB=12,∴BD=3t﹣12,在Rt△BDE中,∠DBE=30°,∴DE=BD=(3t﹣12)=t﹣6,OF=1+t,则t﹣6=1+t,解得:t=14,即以点D,O,F,E为顶点的四边形是矩形时,t的值为14秒.本题是四边形综合题目,考查了平行四边形的判定与性质、坐标与图形性质、矩形的性质、含30°角的直角三角形的性质等知识;本题难度适中,熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.17、(1)详见解析;(2)以上结论仍然成立.【解析】
(1)利用正方形的性质得OA=OB,∠AOB=∠BOC=90°,则利用等角的余角相等得到∠GAE=∠OBE,则可根据”ASA“判断△AOF≌△BOE,从而得到OF=OE;(2)同样方法证明△AOF≌△BOE,仍然得到OF=OE.【详解】解:(1)证明:∵四边形ABCD为正方形,∴OA=OB,∠AOB=∠BOC=90°,∵AG⊥BE于点G,∴∠AGE=90°,∴∠GAE=∠OBE,在△AOF和△BOE中,,∴△AOF≌△BOE(ASA),∴OF=OE;(2)解:以上结论仍然成立.理由如下:同样可证明△AOF≌△BOE(ASA),所以OF=OE.本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.18、(1);(2)或.【解析】
(1))把代入即可求出a;(2)分①时和②时根据函数值进行求解.【详解】解:(1)把代入得,解得;(2)①时,y随x的增大而增大,则当时,y有最大值2,把,代入函数关系式得,解得;②时,y随x的增大而减小,则当时,y有最大值2,把代入函数关系式得,解得,所以或.此题主要考查一次函数的图像,解题的关键是根据题意分情况讨论.一、填空题(本大题共5个小题,每小题4分,共20分)19、-1(答案不唯一)【解析】
由反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限可写出一个满足条件的k的值.【详解】解:∵函数图象在二四象限,∴k<0,∴k可以是-1.故答案为-1(答案不唯一).本题考查了反比例函数图象的性质(1)反比例函数y=(k≠0)的图象是双曲线;(1)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.20、10xy2【解析】试题解析:分母分别是故最简公分母是故答案是:点睛:确定最简公分母的方法是:
(1)取各分母系数的最小公倍数;
(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;
(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.21、1【解析】
根据根与系数的关系可得:α+β=2019,αβ=1,将其代入(α﹣2019)(β﹣2019)=αβ-2019(α+β)+中即可求出结论.【详解】∵α、β是一元二次方程x2﹣2019x+1=0的两实根,∴α+β=2019,αβ=1,∴(α﹣2019)(β﹣2019)=αβ-2019(α+β)+=1.故答案为1.本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.22、上1【解析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.【详解】解:函数的图象是由直线向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024跨境电商服务平台居间合同
- 二零二四年中英文教育培训机构合作服务合同3篇
- 2025年度物流仓储场地租赁及供应链管理合同6篇
- 2025年度航空航天产业技术工人劳动合同3篇
- 2025年度网络安全监测预警服务合同6篇
- 2025年度大型企业员工培训服务采购合同范本3篇
- 二零二四年A公司网站开发合同协议书
- 二零二五年度大厦商场租赁合同(含节假日营业规定)3篇
- 2025年度餐厨废弃物处置与废弃物处理设施运营管理合同3篇
- 2025版煤矿安全生产责任险投保合同3篇
- 春节文化常识单选题100道及答案
- 12123交管学法减分考试题及答案
- 2024年杭州师范大学附属医院招聘高层次紧缺专业人才笔试真题
- 制造业BCM业务连续性管理培训
- 商场停车场管理制度
- 24年追觅在线测评28题及答案
- TGDNAS 043-2024 成人静脉中等长度导管置管技术
- 《陆上风电场工程概算定额》NBT 31010-2019
- 皮带输送机工程施工电气安装措施要点
- 药房(冰柜)温湿度表
- QJ903.9A-1995航天产品工艺文件管理制度管理用工艺文件编制规则
评论
0/150
提交评论