版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页山东省潍坊诸城市第七中学2025届数学九年级第一学期开学达标检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足()A.点D是BC的中点B.点D在∠BAC的平分线上C.AD是△ABC的一条中线D.点D在线段BC的垂直平分线上2、(4分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是03、(4分)下列根式不是最简二次根式的是()A. B. C. D.4、(4分)某次文艺演中若干名评委对八(1)班节目给出评分.在计算中去掉一个最高分和最低分.这种操作,对数据的下列统计一定不会影响的是()A.平均数 B.中位数 C.众数 D.方差5、(4分)已知二次函数(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或 D.或6、(4分)向一容器内均匀注水,最后把容器注满在注水过程中,容器的水面高度与时间的关系如图所示,图中PQ为一线段,则这个容器是(
)A. B. C. D.7、(4分)如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠BAC=112°,则∠DAE的度数为()A.68° B.56° C.44° D.24°8、(4分)下列方程中有实数根的是()A.; B.=; C.; D.=1+.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)有一组数据:3,,4,6,7,它们的平均数是5,那么这组数据的方差是______.10、(4分)学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______________.11、(4分)实数,在数轴上对应点的位置如图所示,化简的结果是__________.12、(4分)已知∠ABC=60°,点D是其角平分线上一点,BD=CD=6,DE//AB交BC于点E.若在射线BA上存在点F,使,请写出相应的BF的长:BF=_________13、(4分)若的整数部分为,小数部分为,则的值是___.三、解答题(本大题共5个小题,共48分)14、(12分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为,所抽查的学生人数为.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.15、(8分)解方程:x2﹣2x=1.16、(8分)如图,矩形的顶点分别在轴的正半轴上,点在反比例函数的第一象限内的图像上,,动点在轴的上方,且满足.(1)若点在这个反比例函数的图像上,求点的坐标;(2)连接,求的最小值;(3)若点是平面内一点,使得以为顶点的四边形是菱形,则请你直接写出满足条件的所有点的坐标.17、(10分)为引导学生广泛阅读古今文学名著,某校开展了读书活动.学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:学生平均每周阅读时间频数分布表平均每周阅读时间x(时)频数频率0≤x<2100.0252≤x<4600.1504≤x<6a0.2006≤x<8110b8≤x<101000.25010≤x≤12400.100合计4001.000请根据以上信息,解答下列问题;(1)在频数分布表中,a=______,b=______;(2)补全频数分布直方图;(3)如果该校有1600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有多少人?18、(10分)计算:+(π﹣3)0﹣()﹣1+|1﹣|B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)不等式2x-1>x解集是_________.20、(4分)如图,在中,已知,,现将沿所在的直线向右平移4cm得到,于相交于点,若,则阴影部分的面积为______.21、(4分)为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单价(元/张)2030407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为____元.22、(4分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为_____.23、(4分)在平行四边形ABCD中,∠A+∠C=200°,则∠A=_____.二、解答题(本大题共3个小题,共30分)24、(8分)某学校开展课外体育活动,决定开设A:篮球、B:羽毛球、C:跑步、D:乒乓球这四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生2500人,请根据样本估计全校最喜欢跑步的学生人数约是多少?25、(10分)计算:(-)0+(-4)-2-|-|26、(12分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,求菱形的面积及线段DH的长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
根据角平分线的判定定理解答即可.【详解】如图所示,DE为点D到AB的距离.∵DC=DE,∠C=90°,DE⊥AB,∴AD平分∠CAD,则点D在∠BAC的平分线上.故选B.本题考查了角平分线的判定,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.2、B【解析】分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.3、C【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A.,是最简二次根式,不符合题意;B.,是最简二次根式,不符合题意;C.,不是最简二次根式,符合题意;D.,是最简二次根式,不符合题意,故选C.【点睛】本题考查了最简二次根式,规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.4、B【解析】
根据平均数、中位数、方差及众数的意义分别判断后即可确定正确的选项.【详解】解:去掉一个最高分和一个最低分一定会影响到平均数、方差,可能会影响到众数,一定不会影响到中位数,故选B.本题考查了统计量的选择,解题的关键是了解平均数、中位数、方差及众数的意义,难度不大.5、A【解析】
首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.【详解】依题意知a>0,>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,∴﹣2<2a﹣2<2,又a﹣b为整数,∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1,故选A.根据开口和对称轴可以得到b的范围.按照左同右异规则.当对称轴在y轴的左侧,则a,b符号相同,在右侧则a,b符号相反.6、C【解析】
观察图象,开始上升缓慢,最后匀速上升,再针对每个容器的特点,选择合适的答案解答即可.【详解】根据图象,水面高度增加的先逐渐变快,再匀速增加;故容器从下到上,应逐渐变小,最后均匀.故选C.此题考查函数的图象,解题关键在于结合实际运用函数的图像.7、C【解析】
根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.【详解】解:∠B+∠C=180°-∠BAC=68°,
∵AB的垂直平分线交BC于D,
∴DA=DB,
∴∠DAB=∠B,
∵AC的中垂线交BC于E,
∴EA=EC,
∴∠EAC=∠C,
∴∠DAE=∠BAC-(∠DAB+∠EAC)=112°-68°=44°,
故选:C.本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8、B【解析】【分析】根据算术平方根意义或非负数性质以及分式方程的意义,可以判断方程的根的情况.【详解】A.,算术平方根不能是负数,故无实数根;B.=,两边平方可化为二元一次方程,有实数根,故可以选;C.方程化为,平方和不能是负数,故不能选;D.由=1+得x=1,使分母为0,故方程无实数根.故选:B【点睛】本题考核知识点:方程的根.解题关键点:根据方程的特殊形式判断方程的根的情况.二、填空题(本大题共5个小题,每小题4分,共20分)9、2【解析】试题分析:已知3,a,4,6,1.它们的平均数是5,根据平均数的公式可得a=5×5﹣3﹣4﹣6﹣1=5,所以这组数据的方差是s2=[(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(1﹣5)2]=2.考点:平均数;方差.10、9;9【解析】【分析】根据中位数和众数定义可以分析出结果.【详解】这组数据中9出现次数最多,故众数是9;按顺序最中间是9,所以中位数是9.故答案为9;9【点睛】本题考核知识点:众数,中位数.解题关键点:理解众数,中位数的定义.11、【解析】由图可知:a<0,a﹣b<0,则原式=﹣a﹣(a﹣b)=﹣2a+b=.故答案为.12、2或4.【解析】
过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.【详解】如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;过点D作DF2⊥BD,
∵∠ABC=60°,F1D∥BE,
∴∠F2F1D=∠ABC=60°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,
∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等边三角形,
∴DF1=DF2,
∵BD=CD,∠ABC=60°,点D是角平分线上一点,
∴∠DBC=∠DCB=×60°=30°,
∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF2=360°-150°-60°=150°,
∴∠CDF1=∠CDF2,
∵在△CDF1和△CDF2中,,
∴△CDF1≌△CDF2(SAS),
∴点F2也是所求的点,
∵∠ABC=60°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×60°=30°,
又∵BD=6,
∴BE=×6÷cos30°=3÷=2,
∴BF1=BF2=BF1+F1F2=2+2=4,
故BF的长为2或4.故答案为:2或4.本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.13、3【解析】
先估算,再估算,根据6-的整数部分为x,小数部分为y,可得:x=2,y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,y=,所以(2x+)y=,故答案为:3.本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.三、解答题(本大题共5个小题,共48分)14、(1)45%,60;(2)见解析18;(3)7,7.2;(4)780【解析】
(1)根据睡眠时间为6小时、7小时、8小时、9小时的百分比之和为1可得a的值,用睡眠时间为6小时的人数除以所占的比例即可得到抽查的学生人数;(2)用抽查的学生人数乘以睡眠时间为8小时所占的比例即可得到结果;(3)根据众数,平均数的定义即可得到结论;(4)用学生总数乘以抽样中睡眠不足(少于8小时)的学生数所占的比例列式计算即可.【详解】(1)a=1﹣20%﹣30%﹣5%=45%;所抽查的学生人数为:3÷5%=60(人).故答案为:45%,60;(2)平均睡眠时间为8小时的人数为:60×30%=18(人);(3)这部分学生的平均睡眠时间的众数是7人,平均数7.2(小时);(4)1200名睡眠不足(少于8小时)的学生数1200=780(人).本题考查了频数(率)分布直方图,扇形统计图,以及用样本估计总体,弄清题意是解答本题的关键.15、,.【解析】
两边都加1,运用配方法解方程.【详解】解:,,,所以,.本题考核知识点:解一元二次方程.解题关键点:掌握配方法.16、(1)点P的坐标为(6,2);(2);(3)Q(4−,5),Q(4+,5),Q(4−2,−1),Q(4+2,−1).【解析】
(1)首先根据点B坐标,确定反比例函数的解析式,设点P的纵坐标为m(m>0),根据,构建方程即可解决问题;(2)过点(0,2),作直线l⊥y轴,由(1)知,点P的纵坐标为2,推出点P在直线l上作点O关于直线l的对称点O',则OO'=4,连接AO'交直线l于点P,此时PO+PA的值最小;(3)分两种情形分别求解即可解决问题;【详解】(1)∵四边形OABC是矩形,OA=4,OC=3,∴点B的坐标为(4,3),∵点B在反比例函数的第一象限内的图象上∴k=12,∴y=,设点P的纵坐标为m(m>0),∵.∴⋅OA⋅m=OA⋅OC⋅,∴m=2,当点,P在这个反比例函数图象上时,则2=,∴x=6∴点P的坐标为(6,2).(2)过点(0,2),作直线l⊥y轴.由(1)知,点P的纵坐标为2,∴点P在直线l上作点O关于直线l的对称点O',则OO'=4,连接AO'交直线l于点P,此时PO+PA的值最小,则PO+PA的最小值=PO'+PA=O'A=.(3)①如图2中,当四边形ABQP是菱形时,易知AB=AP=PQ=BQ=3,P(4−,2),P(4,2),∴Q(4−,5),Q(4+,5).②如图3中,当四边形ABPQ是菱形时,P(4−2,2),P(4+2,2),∴Q(4−2,−1),Q(4+2,−1).综上所述,点Q的坐标为Q(4−,5),Q(4+,5),Q(4−2,−1),Q(4+2,−1).此题考查反比例函数图象上点的坐标特点,菱形的性质,矩形的性质,解题关键在于作辅助线和分情况讨论.17、(1)80,0.1;(2)见详解;(3)1000人【解析】
(1)求出总人数,总人数乘以0.2即可得到a,110除以总人数即可得到b.(2)根据(1)中计算和表中信息画图.(3)根据用样本估计总体的方法求解.【详解】解:(1)10÷0.025=400人;a=400×0.2=80人,b==0.1;故答案为80,0.1.(2)如图:(3)1600×(0.1+0.25+0.1)=1000人.本题考查了频数分布直方图、频数分布表,两图结合是解题的关键.18、【解析】
按顺序分别进行二次根式的化简、0次幂的计算、负指数幂的计算、绝对值的化简,然后再按运算顺序进行计算即可得.【详解】+(π﹣3)0﹣()﹣1+|1﹣|==.本题考查了实数的混合运算,涉及了二次根式的化简、0次幂的计算、负指数幂的计算、绝对值的化简等,熟练掌握各运算的运算法则是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、x>1【解析】
将不等式未知项移项到不等式左边,常数项移项到方程右边,合并后将x的系数化为1,即可求出原不等式的解集.【详解】解:2x-1>x,
移项得:2x-x>1,
合并得:x>1,
则原不等式的解集为x>1.
故答案为:x>1此题考查了一元一次不等式的解法,解一元一次不等式的步骤为:去分母,去括号,移项,合并同类项,将x的系数化为1求出解集.20、1【解析】
根据平移的性质求出A′B,然后根据阴影部分的面积列式计算即可得解.【详解】解:∵AB=BC=9cm,平移距离为4cm,∴A′B=9−4=5cm,∵,∴,∵∠ABC=90°,∴阴影部分的面积=,故答案为:1.本题考查了平移的性质,是基础题,熟记平移的性质是解题的关键.21、1【解析】
根据题意算出5种方案的钱数,故可求解.【详解】解:连续6天不限次数乘坐地铁有5种方案方案①:买一日票6张,费用20×6=120(元)方案②:买二日票3张:30×3=90(元)方案③:买三日票2张:40×2=1(元)方案④:买一日票1张,五日票1张:20+70=120(元)方案⑤:买七日票1张:90元故方案③费用最低:40×2=1(元)故答案为1.此题主要考查有理数运算的应用,解题的关键是根据题意写出各方案的费用.22、8a.【解析】
由菱形的性质易得AC⊥BD,由此可得∠AOB=90°,结合点E是AB边上的中点可得AB=2OE=a,再结合菱形的四边相等即可求得菱形ABCD的周长为8a.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,∴∠AOB=90°,又∵点E为AB边上的中点,OE=a,∴AB=2OE=2a,∴菱形ABCD的周长=2a×4=8a.故答案为:8a.“由菱形的性质得到AC⊥BD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 同学30周年聚会活动方案(10篇)
- 初中高知识专项测试题附答案
- 2024安全管理技术竞赛(多选、判断)复习试题及答案
- 国开计算机文化基础第1章形考客观题题库2及答案
- 专题九软文营销(课件)职教高考电子商务专业《网络营销实务》
- 贵阳某教育公司中考九年级英语第一轮复习 语法专题精讲-动词 含答案
- 工程硕士研究生英语基础教程课后题语法翻译
- 高中英语语法复习必修三
- 第1章 离散时间信号与系统课件
- 新生儿营养和喂养课件
- 2024-2030年中国装备故障预测和健康管理(PHM)行业发展现状与前景预测分析研究报告
- 2024个人房屋装修合同格式(电子版)范文
- 关爱流浪小动物(教学设计)-2024-2025学年三年级上册综合实践活动教科版
- (高清稿)DB44∕T 2515-2024 水利工程水文化设计导则
- 《珍爱生命拒绝毒品》主题班会课件
- (统编2024版)一年级语文上册 语文园地二 教学课件
- 历史知识清单2024~2025学年统编版九年级历史上册
- 2024至2030年全球及中国眼动仪行业市场分析及投资建议报告
- 无脊椎动物课件-2024-2025学年人教版生物七年级上册
- 墙布窗帘购销合同协议书
- 初中体育与健康 初二 水平四(八年级)田径大单元教学设计+快速跑教案
评论
0/150
提交评论