版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页山东省威海市乳山市2024-2025学年数学九年级第一学期开学学业质量监测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若直线经过第一、二、四象限,则化简的结果是()A.2k B.2k C.k2 D.不能确定2、(4分)有100个数据,落在某一小组内的频数与总数之比是0.4,那么在这100个数据中,落在这一小组内的数据的频数是()A.100B.40C.20D.43、(4分)如图,在△ABC中,∠C=78°,若沿图中虚线截去∠C,则∠1+∠2=()A.282° B.180° C.258° D.360°4、(4分)下列各式中的最简二次根式是()A. B. C. D.5、(4分)如图,已知A点坐标为(5,0),直线y=kx+b(b>0)与y轴交于点B,∠BCA=60°,连接AB,∠α=105°,则直线y=kx+b的表达式为()A. B. C. D.6、(4分)下列事件中,是必然事件的是()A.3天内下雨 B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同 D.a抛掷1个均匀的骰子,出现4点向上7、(4分)如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m8、(4分)如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20,那么△DEF的周长是()A.20 B.15 C.10 D.5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是分.10、(4分)如图,△ABC中,D,E分别为AB,AC的中点,∠B=70°,则∠ADE=度.11、(4分)一元二次方程的根是_____________12、(4分)点A(-1,y1),B(3,y2)是直线y=-4x+3图象上的两点,则y1______y2(填“>”或“<”).13、(4分)一元二次方程x2﹣x=0的根是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角坐标系中,OA=OB=8,OD=1,点C为线段AB的中点(1)直接写出点C的坐标;(2)求直线CD的解析式;(3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.15、(8分)解方程:16、(8分)小明同学为了解自己居住的小区家庭生活用水情况,从中随机调查了其中的家庭一年的月平均用水量(单位:顿).并将调查结果制成了如图所示的条形和扇形统计图.小明随机调查了户家庭,该小区共有户家庭;,;这个样本数据的众数是,中位数是;根据样本数据,请估计该小区家庭月平均用水量不超过吨的有多少户?17、(10分)如图,在平面直角坐标系内,已知△ABC的三个顶点坐标分别为A(1,3)、B(4,2)、C(3,4).(1)将△ABC沿水平方向向左平移4个单位得△A1B1C1,请画出△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2;(3)若△A1B1C1与△A2B2C2关于点P成中心对称,则点P的坐标是18、(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).①若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;②若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;③将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)当x_________时,分式有意义.20、(4分)的化简结果为________21、(4分)如果关于x的分式方程有增根,则增根x的值为_____.22、(4分)如图,直线为和的交点是,过点分别作轴、轴的垂线,则不等式的解集为__________.23、(4分)若直线y=ax+7经过一次函数y=4﹣3x和y=2x﹣1的交点,则a的值是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐标系xOy中,一次函数的图象与正比例函数的图象交于点A(2,m),一次函数的图象分别与x轴、y轴交于B、C两点.(1)求m、k的值;(2)求∠ACO的度数和线段AB的长.25、(10分)已知一次函数y=1x-4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1,d1.(1)求点A,B的坐标;(1)当P为线段AB的中点时,求d1+d1的值;(3)直接写出d1+d1的范围,并求当d1+d1=3时点P的坐标;(4)若在线段AB上存在无数个点P,使d1+ad1=4(a为常数),求a的值.26、(12分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
根据一次函数图像的性质,函数图像过一、二、四象限,则k<0.b>0.并考察了绝对值的性质.【详解】∵直线y=kx+2经过第一、二、四象限,∴k<0,∴k-2<0,∴|k-2|=2-k,故选B.本题考查了一次函数图像的性质,难点在于根据函数所过象限确定系数的值.2、B【解析】
根据频率、频数的关系:频率=频数÷数据总数,可得频数=频率×数据总数.【详解】∵一个有100个数据的样本,落在某一小组内的频率是0.4,∴在这100个数据中,落在这一小组内的频数是:100×0.4=1.故选B.本题考查了频率、频数与数据总数的关系:频数=频率×数据总数.3、C【解析】
先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【详解】如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=78°+180°=258°.故选C.此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.4、C【解析】最简二次根式必须满足两个条件:①被开方数中不含开得尽方的因数(或因式);②被开方数中不含分母;由此可知选项A、B、D都不符合要求,只有C选项符合.故选C.5、B【解析】
根据等腰直角三角形的性质和三角函数分别求B、C两点的坐标,利用待定系数法求直线的表达式.【详解】∵A点坐标为(1,0),∴OA=1,∵∠BCA=60°,∠α=101°,∴∠BAC=101°﹣60°=41°,∴△AOB是等腰直角三角形,∴AO=BO=1,∴B(0,1).∵∠CBO=90°﹣∠BCA=30°,∴BC=2CO,BO==CO=1,∴CO=,∴C(﹣,0),把B(0,1)和C(﹣,0)代入y=kx+b中得:,解得:,∴直线BC的表达式为:y=x+1.故选B.本题考查了利用待定系数法求直线的解析式、含30度角的直角三角形、等腰直角三角形的性质及图形与坐标特点,熟练掌握图形与坐标特点是本题的关键.6、C【解析】
根据随机事件和必然事件的定义分别进行判断.【详解】A.3天内会下雨为随机事件,所以A选项错误;B.打开电视机,正在播放广告,是随机事件,所以B选项错误;C.367人中至少有2人公历生日相同是必然事件,所以C选项正确;D.a抛掷1个均匀的骰子,出现4点向上,是随机事件,所以D选项错误.故选C.此题考查随机事件,解题关键在于掌握其定义.7、C【解析】
利用勾股定理求出门框对角线的长度,由此即可得出结论.【详解】解:如图,门框的对角线长为:=2.5m,所以能通过门框的木板的最大宽度为2.5m,故选C.本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.8、C【解析】试题分析::∵D、E分别是△ABC的边BC、AB的中点,∴DE=AC,同理EF=BC,DF=AB,∴C△DEF=DE+EF+DF=(AC+BC+AB)=×20=1.故选C.考点:三角形的中位线定理二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.【详解】小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).故答案为1.10、1【解析】
由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出∠ADE的度数.【详解】∵D,E分别为AB,AC的中点,∴DE是三角形的中位线,∴DE∥BC,∴∠ADE=∠B=1°,故答案为1.本题考查了三角形中位线的性质以及平行线的性质.11、,【解析】
先把-2移项,然后用直接开平方法求解即可.【详解】∵,∴,∴x+3=±,∴,.故答案为:,.本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.12、y1>y2【解析】∵在中,,∴在函数中,y随x的增大而减小.又∵,∴,即空格处应填“>”.13、x1=0,x2=1【解析】
方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为x1=0,x2=1.此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)点C的坐标为(4,4);(2)直线CD的解析式是y=;(3)点F的坐标是(11,4),(5,-4)或(-3,4).【解析】
(1)由OA,OB的长度可得出点A,B的坐标,结合点C为线段AB的中点可得出点C的坐标;
(2)由OD的长度可得出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线CD的解析式;
(3)设点F的坐标为(m,n),分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分可得出关于m,n的二元一次方程组,解之即可得出点F的坐标.【详解】(1)∵OA=OB=8,点A在x轴正半轴,点B在y轴正半轴,∴点A的坐标为(8,0),点B的坐标为(0,8).又∵点C为线段AB的中点,∴点C的坐标为(4,4).(2)∵OD=1,点D在x轴的正半轴,∴点D的坐标为(1,0).设直线CD的解析式为y=kx+b(k≠0),将C(4,4),D(1,0)代入y=kx+b,得:,解得:,∴直线CD的解析式是y=.(3)存在点F,使以A、C、D、F为点的四边形为平行四边形,设点F的坐标为(m,n).分三种情况考虑,如图所示:①当AC为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F1的坐标为(11,4);②当AD为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F2的坐标为(5,-4);③当CD为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F3的坐标为(-3,4).综上所述,点F的坐标是(11,4),(5,-4)或(-3,4).本题考查了中点坐标公式、待定系数法求一次函数解析式、平行四边形的性质以及解二元一次方程组,解题的关键是:(1)由点A,B的坐标,利用中点坐标公式求出点C的坐标;(2)根据点的坐标,利用待定系数法求出直线CD的解析式;(3)分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分找关于m,n的二元一次方程组.15、x=2【解析】
解:两边同乘(x-4),得3-x+1=x-4x=2检验:当x=2时,x-4≠0∴x=2是原分式方程的解.16、;;;估计该小区家庭月平均用水量不超过顿的有户【解析】
(1)根据13吨的用户20户所占的比例为20%,即可计算出随机调查的家庭数,再根据随机调查的10%的家庭即可求出该小区的家庭户数.(2)根据(1)计算的调查总数减去10吨、12吨、13吨、14吨的家庭数量即可计算出m的值,再根据14吨的家庭数除以调查的总数即可计算出n的值.(3)根据条形图即可计算出样本的众数和中位数.(4)首先计算11吨和12吨的家庭所占的比例在根据小区的总数即可计算出不超过顿的有多少户.【详解】解:;;根据条形统计图可得11吨的有40个家庭是最多的,所以众数是11吨;根据统计条形图可得中位数也是11吨.答:估计该小区家庭月平均用水量不超过吨的有户本题主要考查条形图和扇形图的计算问题,这是考试的热点,容易得分,熟练掌握计算.17、(1)见解析(2)见解析(3)(﹣2,0)【解析】
(1)依据△ABC沿水平方向向左平移4个单位得△A1B1C1,即可画出△A1B1C1;(2)依据中心对称的性质,即可得到△ABC关于原点O成中心对称的△A2B2C2;(3)连接两对对应点,其交点即为对称中心.【详解】解:如图:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)如图,点P的坐标是(﹣2,0).故答案为:(﹣2,0).本题考查的是作图一旋转变换、平移变换,根据题意作出各点在几何变换下的对应点是解答此题的关键.18、(1)(2,2),(3,﹣2);(2)(3,﹣5),(2,﹣1),(1,﹣3);(3)(5,3),(1,2),(3,1).【解析】试题分析:(1)利用点C和点的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点,的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出,然后写出的各顶点的坐标.试题解析:(1)如图,即为所求,因为点C(﹣1,3)平移后的对应点的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到,所以点的坐标为(2,2),点的坐标为(3,﹣2);(2)因为△ABC和关于原点O成中心对称图形,所以(3,﹣5),(2,﹣1),(1,﹣3);(3)如图,即为所求,(5,3),(1,2),(3,1).考点:坐标与图形变化-旋转;坐标与图形变化——平移.一、填空题(本大题共5个小题,每小题4分,共20分)19、≠3【解析】
解:根据题意得x-3≠0,即x≠3故答案为:≠320、【解析】
根据二次根式的乘法,化简二次根式即可.【详解】解:,故答案为:.本题考查了二次根式的性质与化简,熟练掌握二次根式的乘法法则是解题关键.21、x=1【解析】
根据增根的概念即可知.【详解】解:∵关于x的分式方程有增根,∴增根x的值为x=1,故答案为:x=1.本题考查了增根的概念,解题的关键是熟知增根是使得分式方程的最简公分母为零的x的值.22、.【解析】
根据一元一次函数和一元一次不等式的关系,从图上直接可以找到答案.【详解】解:由,即函数的图像位于的图像的上方,所对应的自变量x的取值范围,即不等式的解集,解集为.本题考查了一次函数与不等式的关系,因此数形结合成为本题解答的关键.23、-2【解析】根据题意,得4﹣3x=2x﹣1,解得x=1,∴y=1.把(1,1)代入y=ax+7,得a+7=1,解得a=﹣2.故答案为﹣2.二、解答题(本大题共3个小题,共30分)24、(1)m=4,k=2;(2)∠ACO=45°,AB.【解析】
(1)将点A(2,m)代入y=-x+6可得m的值,再将所得点A坐标代入y=kx可得k;
(2)先求得点B、C的坐标,从而得出△OBC是等腰直角三角形,据此知∠ACO=45°,根据勾股定理可得AB的长.【详解】解:(1)把A(2,m)代入y=-x+6得:m=-2+6=4,
把A(2,4)代入y=kx得4=2k,解得k=2;
(2)由y=-x+6可得B(6,0)、C(0,6),
∴OB=OC=6,
∴△OBC是等腰直角三角形,
∴∠ACO=45°.
设AD⊥x轴于点D,AE⊥y轴于点E,
则AD=4,BD=OB-OD=6-2=4,
在Rt△ABD中,AB=.本题主要考查了待定系数法求函数解析式,等腰三角形的判定与性质、勾股定理等知识,掌握基本定理是解题的关键.25、(1)A(1,0)B(0,-4);(1)d1+d1=3;(3)当d1+d1=3时点的坐标为点p1(1,1)、p1(,);(4)在线段上存在无数个p点,a=1.【解析】
(1)对于一次函数解析式,分别令y=0求出x的值,令x=0,求出y的值,即可求出A与B的坐标,(1)求出P点坐标,即可求出d1+d1的值;.(3)根据题意确定出d1+d1的范围,设P(m,1m-4),表示出d1+d1,分类讨论m的范围,根据d1+d1=3求出m的值,即可确定出P的坐标;.(4)设P(m,1m-4),表示出d1与d1,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d1,代入d1+ad1=4,根据存在无数个点P求出a的值即可.【详解】(1)如图所示,令y=0时,x=1,x=0时,y=-4,∴A(1,0)B(0,-4)(1)当为线段的中点时,P(,)即P(1,-1)∴d1+d1=3(3)d1+d1≥1∵P点在一次函数y=1x-4的图象上,故设点P(m,1m-4),∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024届陕西省西北大学附中高三第12次模拟(压轴卷)数学试题试卷
- 5年中考3年模拟试卷初中道德与法治八年级下册04专项素养综合全练(四)
- 人教版一年级下册音乐
- 2024-2025学年专题16.3 电阻-九年级物理人教版含答案
- DB11-T 1962-2022 食用林产品质量安全追溯元数据
- 创意产业园施工合同样本
- 体检中心连锁店装修合同
- 主题公园涂料翻新服务合同
- 保健按摩店装修延期备忘录
- 个性化攀岩墙装修合同模板
- 变电站设计问题自查报告总结
- 中医院信息公开制度
- 讽刺熬夜小品《你睡了没》台词剧本手稿-
- 2023年换轨大修施工组织方案
- 2024电化学储能电站技术规范(合订本)
- DL-T 5745-2021电力建设工程工程量清单计价规范-PDF解密
- 智能建造理论与实践 课件全套 第1-6章 智能建造概述- 智慧城市
- 大学英语课程说课课件省公开课金奖全国赛课一等奖微课获奖课件
- 2024年全国大学生第十一届“大唐杯”新一代信息通信技术大赛备考试题库大全-下(多选、判断、简答题部分)
- 项目试验检测计划
- 五年级语文上册课外必读书《列那狐的故事》阅读练习及答案
评论
0/150
提交评论