




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页山东省青岛西海岸新区第七中学2024-2025学年数学九上开学达标检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列图书馆的标志中,是中心对称图形的是()A. B.C. D.2、(4分)已知点都在反比例函数图象上,则的大小关系()A.. B.C. D.3、(4分)如图,在直角三角形ABC中,AC=8,BC=6,∠ACB=90°,点E为AC的中点,点D在AB上,且DE⊥AC于E,则CD=()A.3 B.4 C.5 D.64、(4分)在方差公式中,下列说法不正确的是()A.n是样本的容量 B.是样本个体 C.是样本平均数 D.S是样本方差5、(4分)如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为()A.55° B.60° C.65° D.70°6、(4分)将一次函数y=4x的图象向上平移3个单位长度,得到图象对应的函数解析式为()A.y=4x-3 B.y=2x-6 C.y=4x+3 D.y=-x-37、(4分)点(-2,3)关于x轴的对称点为().A.(-2,-3) B.(2,-3) C.(2,3) D.(3,-2)8、(4分)如图,中,,点D在AC边上,且,则的度数为A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将一张长与宽之比为的矩形纸片ABCD进行如下操作:对折并沿折痕剪开,发现每一次所得到的两个矩形纸片长与宽之比都是(每一次的折痕如下图中的虚线所示).已知AB=1,则第3次操作后所得到的其中一个矩形纸片的周长是;第2016次操作后所得到的其中一个矩形纸片的周长是.10、(4分)已知一次函数y=-x+1与y=kx+b的图象在同一直角坐标系中的位置如图(直线l1和l2),它们的交点为P,那么关于x的不等式-x+1>kx+b的解集为______.11、(4分)已知矩形ABCD,给出三个关系式:①AB=BC;②AC=BD;③AC⊥BD,如果选择关系式__________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是_______________________________.12、(4分)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐的三项成绩(百分制)依次为95,90,1.则小桐这学期的体育成绩是__________.13、(4分)已知(﹣1,y1)(﹣2,y2)(,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在中,,分别是边,上的点,且.求证:四边形为平行四边形.15、(8分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且,连接BE,求证:.16、(8分)先化简,再求值:,其中a=317、(10分)电力公司为鼓励市民节约用电,采取按月电量分段收费的办法,已知某户居民每月应缴电费(元)与用电量(度)的函数图象是一条折线(如图),根据图象解答下列问题.(1)求出当时,与之间的函数关系式;(2)若该用户某月用电度,则应缴费多少元?18、(10分)(1)如图①所示,将绕顶点按逆时针方向旋转角,得到,,分别与、交于点、,与相交于点.求证:;(2)如图②所示,和是全等的等腰直角三角形,,与、分别交于点、,请说明,,之间的数量关系.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在矩形中,,,点E在边AB上,点F是边BC上不与点B、C重合的一个动点,把沿EF折叠,点B落在点处.若,当是以为腰的等腰三角形时,线段的长为__________.20、(4分)如图,在平面直角坐标系中,已知顶点的坐标分别为,且是由旋转得到.若点在上,点在轴上,要使四边形为平行四边形,则满足条件的点的坐标为______.21、(4分)一列数,,,,其中,(为不小于的整数),则___.22、(4分)如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.23、(4分)计算:3-2=;二、解答题(本大题共3个小题,共30分)24、(8分)在平面直角坐标系中,O为坐标原点.(1)已知点A(3,1),连接OA,作如下探究:探究一:平移线段OA,使点O落在点B,设点A落在点C,若点B的坐标为(1,2),请在图①中作出BC,点C的坐标是__________.探究二:将线段OA绕点O逆时针旋转90°,设点A落在点D,则点D的坐标是__________;连接AD,则AD=________(图②为备用图).(2)已知四点O(0,0),A(a,b),C,B(c,d),顺次连接O,A,C,B,O,若所得到的四边形为平行四边形,则点C的坐标是____________.25、(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?26、(12分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表一周诗词诵背数量3首4首5首6首7首8首人数101015402520请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据中心对称图形的概念判断即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.此题主要考查了中心对称图形的概念.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.2、B【解析】
根据反比例函数图象的性质:当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小判断求解即可.【详解】解:∵中,,∴图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小,∵点A、B位于第一象限,且,∴,∵点C位于第三象限,∴∴的大小关系是:故选:B.本题考查的知识点是反比例函数的性质,掌握反比例函数的图象和性质是解此题的关键.3、C【解析】
根据勾股定理先求出AB的长度,利用角关系得出等腰△ACD及等腰△BCD,得出CD=BD=AD=12AB=【详解】如图∵AC=8,BC=6,∠ACB=90°∴AB=A∵点E为AC的中点,DE⊥AC于E∴ED垂直平分AC∴AD=CD∴∠1=∠2∵∠ACB=90°∴∠1+∠4=∠2+∠3=90°∴∠3=∠4∴CD=BD∴CD=BD=AD=12AB=故选:C本题考查了勾股定理及等腰三角形的性质和判定,掌握由角关系推出线关系是解题的关键.4、D【解析】
根据方差公式中各个量的含义直接得到答案.【详解】A,B,C都正确;是样本方差,故D选项错误.故选D.5、D【解析】
根据平行线的性质求出∠3=∠1=40°,根据三角形的外角性质求出∠2=∠3+∠A,代入求出即可.【详解】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故选D.本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解答此题的关键,注意:两直线平行,内错角相等.6、C【解析】
根据一次函数的平移特点即可求解.【详解】∵将一次函数y=4x的图象向上平移3个单位长度,∴得到图象对应的函数解析式为y=4x+3故选C.此题主要考查一次函数的图像,解题的关键是熟知一次函数的平移特点.7、A【解析】
根据关于x轴对称的两点的坐标规律:横坐标相同,纵坐标互为相反数,即可求出.【详解】解:∵关于x轴对称的两点的坐标规律:横坐标相同,纵坐标互为相反数∴点(-2,3)关于x轴的对称点为:(-2,-3)故选A.此题考查的是求一个点关于x轴对称的对称点的坐标,掌握关于x轴对称的两点的坐标规律:横坐标相同,纵坐标互为相反数,是解决此题的关键.8、B【解析】
利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.【详解】,,,,,设,则,,可得,解得:,则,故选B.本题考查了等腰三角形的性质,以及三角形内角和定理,熟练掌握等腰三角形的性质是解本题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、第3次操作后所得到标准纸的周长是:,第2016次操作后所得到标准纸的周长为:.【解析】
分别求出每一次对折后的周长,从而得出变化规律求出即可:观察变化规律,得第n次对开后所得标准纸的周长=.【详解】对开次数:第一次,周长为:,第二次,周长为:,第三次,周长为:,第四次,周长为:,第五次,周长为:,第六次,周长为:,…∴第3次操作后所得到标准纸的周长是:,第2016次操作后所得到标准纸的周长为:.本题结合规律和矩形的性质进行考察,题目新颖,解题的关键是分别求出每一次对折后的周长,从而得出变化规律.10、x<-1【解析】
根据函数图像作答即可.【详解】∵-x+1>kx+b∴l1的图像应在l2上方∴根据图像得:x<-1.故答案为:x<-1.本题考查的知识点是函数的图像,解题关键是根据图像作答.11、①一组邻边相等的矩形是正方形【解析】
根据正方形的判定定理添加一个条件使得矩形是菱形即可.【详解】解:∵四边形ABCD是矩形,AB=BC,∴矩形ABCD为正方形(一组邻边相等的矩形是正方形).故答案为:①,一组邻边相等的矩形是正方形.本题考查了正方形的判定定理,熟练掌握正方形的判定定理即可得到结论.12、2.5【解析】
根据题意,求小桐的三项成绩的加权平均数即可.【详解】95×20%+90×30%+1×50%=2.5(分),答:小桐这学期的体育成绩是2.5分.故答案是:2.5本题主要考查加权平均数,掌握加权平均数的意义,是解题的关键.13、【解析】
先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.【详解】∵反比例函数y=−2x中,k=−2<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大。∵−2<−1<0,12>0,∴点A(−2,y2),B(−1,y1)在第二象限,点C(12,y3)在第四象限,∴y3<y2<y1.故答案为:y3<y2<y1本题考查反比例函数图象所在的象限及其增减性,当k<0时函数图象两个分支分别在第二、三象限内,y随x的增大而增大;当k>0时函数图象两个分支分别在第一、四象限内,y随x的增大而减小.三、解答题(本大题共5个小题,共48分)14、证明见解析.【解析】
由平行四边形的性质,得到AD∥BC,AD=BC,由,得到,即可得到结论.【详解】证明:四边形是平行四边形,∴,.∵,∴.∴,∵,,∴四边形是平行四边形.本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.15、证明见解析【解析】
由平行四边形性质得,,,又证≌,可得,.【详解】证明:四边形ABCD是平行四边形,,,,,,,在和中,,≌,.本题考核知识点:平行四边形性质,全等三角形.解题关键点:由全等三角形性质得到线段相等.16、【解析】
根据分式的运算法则及运算顺序,把所给的分式化为最简分式,再代入求值即可.【详解】原式=当时,原式=本题考查了分式的化简求值,根据分式的运算法则及运算顺序,把所给的分式化为最简分式是解决问题的关键.17、(1);(2)用电度,应缴费元【解析】
(1)本题考查的是分段函数的知识.依题意可以列出函数关系式;
(2)根据(1)中的函数解析式以及图标即可解答.【详解】解:(1)设与的关系式为,射线过点、,,解得.与的关系式是.(2)当时,.用电度,应缴费元.本题主要考查一次函数的应用以及待定系数法求函数解析式,解决问题的关键是从一次函数的图象上获取信息.18、(1)见解析;(1)FG1=BF1+GC1.理由见解析【解析】
(1)利用ASA证明△EAF≌△BAH,再利用全等三角形的性质证明即可;
(1)结论:FG1=BF1+GC1.把△ABF旋转至△ACP,得△ABF≌△ACP,再利用三角形全等的知识证明∠ACP+∠ACB=90°,根据勾股定理进而可以证明BF、FG、GC之间的关系.【详解】(1)证明:如图①中,
∵AB=AC=AD=AE,∠CAB=∠EAD=90°,
∴∠EAF=∠BAH,∠E=∠B=45°,
∴△EAF≌△BAH(ASA),
∴AH=AF;
(1)解:结论:GF1=BF1+GC1.
理由如下:如图②中,把△ABF旋转至△ACP,得△ABF≌△ACP,
∵∠1=∠4,AF=AP,CP=BF,∠ACP=∠B,
∵∠DAE=45°
∴∠1+∠3=45°,
∴∠4+∠3=45°,
∴∠1=∠4+∠3=45°,
∵AG=AG,AF=AP,
∴△AFG≌△AGP(SAS),
∴FG=GP,
∵∠ACP+∠ACB=90°,
∴∠PCG=90°,
在Rt△PGC中,∵GP1=CG1+CP1,
又∵BF=PC,GP=FG,
∴FG1=BF1+GC1.本题考查旋转变换,等腰直角三角形的性质,全等三角形的判定和性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.一、填空题(本大题共5个小题,每小题4分,共20分)19、16或2【解析】
等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;【详解】∵四边形ABCD是矩形,
∴DC=AB=16,AD=BC=1.
分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.
∵四边形ABCD是矩形,
∴AB∥CD,∠A=90°
又GH∥AD,
∴四边形AGHD是平行四边形,又∠A=90°,
∴四边形AGHD是矩形,
∴AG=DH,∠GHD=90°,即B'H⊥CD,
又B'D=B'C,
∴DH=HC=,AG=DH=8,∵AE=3,
∴BE=EB'=AB-AE=16-3=13,
EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′=,
∴B'H=GH×GB'=1-12=6,
在Rt△B'HD中,由勾股定理得:B′D=
综上,DB'的长为16或2.故答案为:16或2本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.20、(−1.5,2)或(−3.5,−2)或(−0.5,4).【解析】
要使以为顶点的四边形是平行四边形,则PQ=AC=2,在直线AB上到x轴的距离等于2的点,就是P点,因此令y=2或−2求得x的值即可.【详解】∵点Q在x轴上,点P在直线AB上,以为顶点的四边形是平行四边形,当AC为平行四边形的边时,∴PQ=AC=2,∵P点在直线y=2x+5上,∴令y=2时,2x+5=2,解得x=−1.5,令y=−2时,2x+5=−2,解得x=−3.5,当AC为平行四边形的对角线时,∵AC的中点坐标为(3,2),∴P的纵坐标为4,代入y=2x+5得,4=2x+5,解得x=−0.5,∴P(−0.5,4),故P为(−1.5,2)或(−3.5,−2)或(−0.5,4).故答案为:(−1.5,2)或(−3.5,−2)或(−0.5,4).此题考查坐标与图形变化-旋转,解题关键在于掌握性质的性质21、【解析】
把a1,a2,a3代入代数式计算,找出规律,根据规律计算.【详解】a1=,,,……,2019÷3=673,∴a2019=-1,故答案为:-1.本题考查的是规律型:数字的变化类问题,正确找出数字的变化规律是解题的关键.22、①②③④【解析】
首先证明证明Rt△ADF≌Rt△BAC,结合已知得到AE=DF,然后根据内错角相等两直线平行得到DF∥AE,由一组对边平行且相等可得四边形ADFE是平行四边形,故②正确;由∠DAC=∠DAB+∠BAC=90°,可得∠AHE=90°,故①正确;由2AG=AF可知③正确;在Rt△DBF和Rt△EFA中,BD=FE,DF=EA,可证Rt△DBF≌Rt△EFA,故④正确.【详解】∵△ABD和△ACE都是等边三角形,
∴AD=BD=AB,AE=CE=AC,∠ADB=∠BAD=∠DBA=∠CAE=∠AEC=∠ACE=60°.
∵F是AB的中点,∴∠BDF=∠ADF=30°,∠DFA=∠DFB=90°,BF=AF=AB.
∵∠BAC=30°,∠ACB=90°,AD=2AF.
∴BC=AB,∠ADF=∠BAC,
∴AF=BF=BC.
在Rt△ADF和Rt△BAC中
AD=BA,AF=BC,
∴Rt△ADF≌Rt△BAC(HL),
∴DF=AC,
∴AE=DF.
∵∠BAC=30°,
∴∠BAC+∠CAE=∠BAE=90°,
∴∠DFA=∠EAB,
∴DF∥AE,
∴四边形ADFE是平行四边形,故②正确;∴AD=EF,AD∥EF,设AC交EF于点H,
∴∠DAC=∠AHE.
∵∠DAC=∠DAB+∠BAC=90°,
∴∠AHE=90°,
∴EF⊥AC.①正确;
∵四边形ADFE是平行四边形,
∴2GF=2GA=AF.
∴AD=4AG.故③正确.
在Rt△DBF和Rt△EFA中
BD=FE,DF=EA,
∴Rt△DBF≌Rt△EFA(HL).故④正确,
故答案为:①②③④.本题解题的关键:运用到的性质定理有,直角全等三角形的判定定理HL,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,全等三角形对应边与对应角相等的性质,平行四边形对角线互相平分与两组对边平行且相等的性质.23、【解析】根据负整数指数为正整数指数的倒数计算.解:3-2=.故答案为.二、解答题(本大题共3个小题,共30分)24、(1)探究一图见解析;(4,3);探究二(-1,3);2;(2)(a+c,b+d)【解析】
(1)探究一:由于点A(3,1),连接OA,平移线段OA,使点O落在点B.设点A落在点C,若点B的坐标为(1,2),由此即可得到平移方法,然后利用平移方法即可确定在图1中作出BC,并且确定点C的坐标;探究二:将线段OA绕点O逆时针旋转90度,设点A落在点D,根据旋转的性质和方向可以确定点D的坐标;(2)已知四点O(0,0),A
(a,b),C,B(c,d),顺次连接O,A,C,B.
若所得到的四边形为平行四边形,那么得到OA∥CB,根据平移的性质和已知条件即可确定点C的坐标;【详解】解:(1)探究一:∵点A(3,1),连接OA,平移线段OA,使点O落在点B.
设点A落在点C,若点B的坐标为(1,2),
则C的坐标为(4,3),作图如图①所示.探究二:∵将线段OA绕点O逆时针旋转90度,
设点A落在点D.
则点D的坐标是(-1,3),如图②所示,由勾股定理得:OD2=0A2=12+32=10,AD===2.(2)(a+c,b+d)∵四点O(0,0),A(a,b),C,B(c,d),顺次连接O,A,C,B,O,所得到的四边形为平行四边形,∴OA綊BC.∴可以看成是把OA平移到BC的位置.∴点C的坐标为(a+c,b+d).本题考查坐标与图形的变换、平行四边形的性质等知识,综合性比较强,要求学生熟练掌握相关的基础知识才能很好解决这类问题.25、(1)A型:100元,B型:150元;(2)①y=-50x+15000;②34台A型电脑和66台B型,利润最大,最大利润是1元【解析】
(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 东莞教师招聘试题及答案
- 安全常识技能考试题及答案
- 探索数字化转型的商业模式
- 2025年金属手镯项目市场调查研究报告
- 小学高年级数学课堂管理的困境与突破-以M小学为样本的深度剖析
- 2025年小学教师资格考试《综合素质》教育心理学课程资源应用试题及答案
- 如何有效应对生产波动计划
- 信息技术支持应用计划
- 医生团队建设与管理经验分享计划
- 生物知识的深度理解与应用计划
- 木地板培训资料大全
- 康养旅游概念及市场现状分析
- 99版-干部履历表-A4打印
- 人教版六年级上册数学(新插图) 倒数的认识 教学课件
- CJJ 36-2016 城镇道路养护技术规范
- 非暴力沟通(完整版)
- 中华传统文化之文学瑰宝学习通超星课后章节答案期末考试题库2023年
- 直臂式高空作业车安全管理培训课件-
- 广东省省级政务信息化服务预算编制标准(运维服务分册)
- 之江实验室:生成式大模型安全与隐私白皮书
- 世界文明史学习通课后章节答案期末考试题库2023年
评论
0/150
提交评论