




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页山东省青岛市平度市2025届九年级数学第一学期开学经典试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如果不等式组有解,那么m的取值范围是
(
)A.m>5
B.m<5
C.m≥5
D.m≤52、(4分)如图,将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,则对于结论:①DE=BC;②∠EAC=∠DAB;③EA平分∠DEC;④若DE∥AC,则∠DEB=60°;其中正确结论的个数是()A.4 B.3 C.2 D.13、(4分)下列几何图形是中心对称图形的是()A. B. C. D.4、(4分)下列说法不能判断是正方形的是()A.对角线互相垂直且相等的平行四边形 B.对角线互相垂直的矩形C.对角线相等的菱形 D.对角线互相垂直平分的四边形5、(4分)若二次根式有意义,则x的取值范围是()A. B. C. D.6、(4分)点在直线上,则点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7、(4分)如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35° B.45° C.50° D.55°8、(4分)在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是()A.①②③④ B.①②③ C.①④ D.②③二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)小张将自己家里1到6月份的用电量统计并绘制成了如图所示的折线统计图,则小张家1到6月份这6个月用电量的众数与中位数的和是_____度.10、(4分)计算:3-2=;11、(4分)将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.12、(4分)如图,矩形纸片ABCD中,,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若,则BC的长度为_______cm.13、(4分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的_____(从“众数、方差、平均数、中位数”中填答案)三、解答题(本大题共5个小题,共48分)14、(12分)益群精品店以转件21元的价格购进一批商品,该商品可以白行定价,若每件商B品位价a元,可卖出(350-10a)件,但物价局限定每件商品的利润率不得超过20%,商店计划要盈利400元,求每件商品应定价多少元?15、(8分)解下列一元二次方程(1)(2)16、(8分)如图,直线l经过点A(1,6)和点B(﹣3,﹣2).(1)求直线l的解析式,直线与坐标轴的交点坐标;(2)求△AOB的面积.17、(10分)邻居张老汉养了一群鸡,现在要建一长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长34米.请同学解决以下问题:(1)若设鸡场的面积为y平方米,鸡场与墙平行的一边长为x米,请写出y与x之间的函数关系式,并写出x的取值范围;(2)当鸡场的面积为160平方米时,鸡场的长与宽分别是多少米?(3)鸡场的最大面积是多少?并求出此时鸡场的长与宽分别是多少米?18、(10分)如图,在中,点,分别在,上,且,连结、.求证:.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)平行四边形ABCD的对角线AC、BD相交于点O,AB=6,BC=8,若△AOB是等腰三角形,则平行四边形ABCD的面积等于_______________________.20、(4分)计算:____________.21、(4分)已知四边形中,,,含角()的直角三角板(如图)在图中平移,直角边,顶点、分别在边、上,延长到点,使,若,,则点从点平移到点的过程中,点的运动路径长为__________.22、(4分)如图,直线AB,IL,JK,DC,相互平行,直线AD,IJ、LK、BC互相平行,四边形ABCD面积为18,四边形EFGH面积为11,则四边形IJKL面积为____.23、(4分)一次函数y=﹣x﹣3与x轴交点的坐标是_____.二、解答题(本大题共3个小题,共30分)24、(8分)解方程:+x=1.25、(10分)已知四边形ABCD是菱形(四条边都相等的平行四边形).AB=4,∠ABC=60°,∠EAF的两边分别与边BC,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系为:.(2)如图2,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE=CF;(3)求△AEF周长的最小值.26、(12分)已知:如图,,是□ABCD的对角线上的两点,,求证:.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】解:∵不等式组有解,∴m≤x<1,∴m<1.故选B.点睛:本题主要考查了不等式组有解的条件,在解题时要会根据条件列出不等式.2、A【解析】
由旋转的性质可知,△ABC≌△ADE,DE=BC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AE=AC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.【详解】∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,∴△ABC≌△ADE,∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,∴∠EAC=∠DAB;故②正确;∵AE=AC,∴∠AEC=∠C,∴∠AEC=∠AED,∴EA平分∠DEC;故③正确;∵DE∥AC,∴∠C=∠BED,∵∠AEC=∠AED=∠C,∴∠DEB=∠AEC=∠AED=60°,故④正确;综上所述:正确的结论是①②③④,共4个,故选:A.本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.3、D【解析】
根据中心对称图形的定义判断即可.【详解】A、图形不是中心对称图形;B、图形不是中心对称图形;C、图形不是中心对称图形;D、图形是中心对称图形;故选D.本题考查的是中心对称图形的定义,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,4、D【解析】
正方形是特殊的矩形和菱形,要判断是正方形,选项中必须要有1个矩形的特殊条件和1个菱形的特殊条件.【详解】A中,对角线相互垂直的平行四边形可判断为菱形,又有对角线相等,可得正方形;B中对角线相互垂直的矩形,可得正方形;C中对角线相等的菱形,可得正方形;D中,对角线相互垂直平分,仅可推导出菱形,不正确故选:D本题考查证正方形的条件,常见思路为:(1)先证四边形是平行四边形;(2)再添加一个菱形特有的条件;(3)再添加一个矩形特有的条件5、C【解析】
根据二次根式有意义的条件“被开方数大于或等于0”进行求解即可.【详解】∵二次根式有意义,∴,∴,故选:C.本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.6、B【解析】
先判断直线y=3x-5所经过的象限,据此可得出答案.【详解】解:直线中,k=3>0,b=-5<0,经过第一、三、四象限,点A在该直线上,所以点A不可能在第二象限.故选:B.本题考查一次函数的图像,画出图像解题会更直观.7、D【解析】
延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数.【详解】解:延长PF交AB的延长线于点G.在△BGF与△CPF中,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴(直角三角形斜边上的中线等于斜边的一半),∵(中点定义),∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,易证FE=FG,∴∠FGE=∠FEG=55°,∵AG∥CD,∴∠FPC=∠EGF=55°故选:D.此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键.8、A【解析】
连接CD根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE=CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理就可以求出结论.【详解】连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,
∴AD=CD=BD=AB.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.
∴∠ADE+∠EDC=90°,
∵∠EDC+∠FDC=∠GDH=90°,
∴∠ADE=∠CDF.
在△ADE和△CDF中,∴△ADE≌△CDF(ASA),
∴AE=CF,DE=DF,S△ADE=S△CDF.
∵AC=BC,
∴AC-AE=BC-CF,
∴CE=BF.
∵AC=AE+CE,
∴AC=AE+BF.
∵DE=DF,∠GDH=90°,
∴△DEF始终为等腰直角三角形.
∵CE1+CF1=EF1,
∴AE1+BF1=EF1.
∵S四边形CEDF=S△EDC+S△EDF,
∴S四边形CEDF=S△EDC+S△ADE=S△ABC.
∴正确的有①②③④.
故选A.本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,解题关键是证明△ADE≌△CDF.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
根据折线统计图,可得1到6月份的用电量的众数与中位数,相加求和即可.【详解】解:根据1到6月份用电量的折线统计图,可得150出现的次数最多,为2次,故用电量的众数为150(度);1到6月份用电量按大小排列为:250,225,150,150,128,125,50,故中位数为150(度),∴众数与中位数的和是:150+150=1(度).故答案为1.本题主要考查了中位数以及众数的定义,解决问题的关键是掌握:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.解题时注意:一组数据中出现次数最多的数据叫做众数.10、【解析】根据负整数指数为正整数指数的倒数计算.解:3-2=.故答案为.11、y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.12、1【解析】
由折叠的性质可证AF=FC.在Rt△ADF中,由勾股定理求AD的长,然后根据矩形的性质求得AD=BC.【详解】解:由折叠的性质知,AE=AB=CD,CE=BC=AD,
∴△ADC≌△CEA,∠EAC=∠DCA,
∴CF=AF=cm,DF=CD-CF=AB-CF==,
在Rt△ADF中,由勾股定理得,
AD2=AF2-DF2,则AD=1cm.∴BC=AD=1cm.
故答案为:1.本题考查了翻折变换的知识,其中利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②全等三角形的判定和性质,勾股定理求解.13、中位数【解析】
9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故答案为:中位数.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.三、解答题(本大题共5个小题,共48分)14、需要进货100件,每件商品应定价25元【解析】
根据:每件盈利×销售件数=总盈利额;其中,每件盈利=每件售价-每件进价.建立等量关系.【详解】解:依题意(a-21)(350-10a)=400,整理得:a2-56a+775=0,解得a1=25,a2=1.∵21×(1+20%)=25.2,∴a2=1不合题意,舍去.∴350-10a=350-10×25=100(件).答:需要进货100件,每件商品应定价25元.本题考查了一元二次方程的应用,注意需要检验结果是否符合题意.15、(1),;(2),.【解析】
(1)将方程左边因式分解,继而求解可得;(2)运用配方法求解即可.【详解】(1)∵(x+3)(x+7)=0,∴x+3=0或x+7=0,解得:,;(2),,∴∴.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键16、(1)y=2x+4,直线与x轴交点为F(-2,0),与y轴交点为E(0,4);(3)S△AOB=8【解析】
试题分析:(1)设直线a的解析式为y=kx+b,用待定系数法求一次函数的解析式即可;(2)设直线a与有轴交于点C,根据S△AOB=S△AOC+S△COB得出答案即可.【详解】试题解析:设直线解析式为y=kx+b,把点A(1,6)和点B(-3,-2)代入上式得6=k+b-2=-3k+b解得:k=2,b=4所以,y=2x+4x=0时,y=4y=0时,x=-2所以,直线与x轴交点为F(-2,0),与y轴交点为E(0,4)(2)设直线a与有轴交于点CS△AOB=S△BOF+S△AOF=2×2×+2×6×=2+6=817、(1)y=-x2+18x(2<x≤18);(2)鸡场的长与宽分别为1米、2米;(3)鸡场的最大面积为12平方米,此时鸡场的长与宽分别为18米、3米.【解析】
(1)用含x的式子表示鸡场与墙垂直的一边长,根据矩形面积公式即可写出函数关系式;
(2)根据(1)所得关系式,将y=2代入即可求解;
(3)求出函数的最大值,使得面积取最大值即可求解.【详解】解:(1)根据题意,鸡场与墙平行的一边长为x米,可得鸡场与墙垂直的一边长为米,即(18-)米,可得y=x(18-)=-x2+18x(2<x≤18);(2)令y=2,即-x2+18x=2,解得x1=1,x2=20(不合题意,舍去),所以x=1.当x=1时,18-=2.所以,鸡场的长与宽分别为1米、2米;(3)对于y==-x2+18x,a=-<0,所以函数有最大值,当x=-=18时,函数有最大值,最大值y=12当x=18时,18-=3.所以鸡场的最大面积为12平方米,此时鸡场的长与宽分别为18米、3米.本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.18、证明见解析【解析】
根据平行四边形性质得出AD∥BC,AD=BC,求出DE=BF,DE∥BF,得出四边形DEBF是平行四边形,根据平行四边形的性质推出即可.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.本题考查了平行四边形的性质和判定;熟练掌握平行四边形的性质,证明四边形DEBF是平行四边形是解决问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1或2【解析】
分三种情形分别讨论求解即可解决问题;【详解】情形1:如图当OA=OB时,∵四边形ABCD是平行四边形,∴AC=2OA,BD=2OB,∴AC=BD,∴四边形ABCD是矩形,∴四边形ABCD的面积=1.情形2:当AB=AO=OC=6时,作AH⊥BC于H.设HC=x.∵AH2=AB2-BH2=AC2-CH2,∴62-(x-8)2=122-x2,∴x=,∴AH=,∴四边形ABCD的面积=8×=2.情形3:当AB=OB时,四边形ABCD的面积与情形2相同.综上所述,四边形ABCD的面积为1或2.故答案为1或2.本题考查平行四边形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.20、﹣1【解析】
首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】原式=﹣8+1+1+3=﹣1.故答案为:﹣1.本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题的关键.21、【解析】
当点P与B重合时,推出△AQK为等腰直角三角形,得出QK的长度,当点M′与D重合时,推出△KQ′M′为等腰直角三角形,得出KQ′的长度,根据题意分析出点Q的运动路径为QK+KQ′,从而得出结果.【详解】解:如图当点M与A重合时,∵∠ABC=45°,∠ANB=90°,PN=MN=CD=3,BN=MN=3,∴此时PB=3-3,∵运动过程中,QM=PB,当点P与B重合时,点M运动到点K,此时点Q在点K的位置,AK即AM的长等于原先PB和AQ的长,即3-3,∴△AQK为等腰直角三角形,∴QK=AQ=3-3,当点M′与D重合时,P′B=BC-P′C=10-3=Q′M′,∵AD=BC-BN=BC-AN=BC-DC=7,KD=AD-AK=7-(3-3)=10-3,Q′M′=BP′=BC-P′C=BC-PN=10-3,∴△KQ′M′为等腰直角三角形,∴KQ′=Q′M′=(10-3)=,当点M从点A平移到点D的过程中,点Q的运动路径长为QK+KQ′,∴QK+KQ′=(3-3)+()=7,故答案为7.本题考查平移变换、运动轨迹、解直角三角形等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.22、1【解析】
由平行四边形的性质可得,,,,由面积和差关系可求四边形面积.【详解】解:,,四边形是平行四边形,,同理可得:,,,四边形面积四边形面积(四边形面积四边形面积),故答案为:1.本题考查了平行四边形的判定与性质,由平行四边形的性质得出是解题的关键.23、(﹣3,0).【解析】
根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论