版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页山东省陵城区江山实验学校2024-2025学年九上数学开学综合测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列计算正确的是()A.=﹣3 B. C.5×5=5 D.2、(4分)在函数中,自变量必须满足的条件是()A. B. C. D.3、(4分)给出下列化简①()2=2:②2;③12;④,其中正确的是()A.①②③④ B.①②③ C.①② D.③④4、(4分)如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为()A.48 B.96 C.80 D.1925、(4分)若关于的方程产生增根,则的值是()A. B. C.或 D.6、(4分)小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是()A.正方形 B.正六边形C.正八边形 D.正十二边形7、(4分)如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5708、(4分)菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若整数m满足,且,则m的值为___________.10、(4分)如图,在▱ABCD中,AB=10,AD=6.对角线AC与BD相交于点O,AC⊥BC,则BD的长为____________.11、(4分)如图,菱形ABCD的边长为4,∠ABC=60°,且M为BC的中点,P是对角线BD上的一动点,则PM+PC的最小值为_____.12、(4分)某种服装原价每件80元,经两次降价,现售价每件1.8元,这种服装平均每次降价的百分率是________。13、(4分)如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.三、解答题(本大题共5个小题,共48分)14、(12分)暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费.假设这两位家长带领x名学生去旅行,甲、乙旅行社的收费分别为y甲,y乙,(1)写出y甲,y乙与x的函数关系式.(2)学生人数在什么情况下,选择哪个旅行社合算?15、(8分)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.16、(8分)已知一次函数,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当______时,.17、(10分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;(3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.18、(10分)如图,在△ABC中,AB=AC,∠BAC=120°,E为BC上一点,以CE为直径作⊙O恰好经过A、C两点,PF⊥BC交BC于点G,交AC于点F.(1)求证:AB是⊙O的切线;(2)如果CF=2,CP=3,求⊙O的直径EC.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,把菱形沿折叠,使点落在上的点处,若,则的大小为_____________.20、(4分)如图,在平行四边形中,连接,且,过点作于点,过点作于点,在的延长线上取一点,,若,则的度数为____________.21、(4分)如图,平行四边形的对角线相交于点,且,平行四边形的周长为8,则的周长为______.22、(4分)对于实数c,d,min{c,d}表示c,d两数中较小的数,如min{3,﹣1}=﹣1.若关于x的函数y=min{2x2,a(x﹣t)2}(x≠0)的图象关于直线x=3对称,则a的取值范围是_____,对应的t值是______.23、(4分)在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;二、解答题(本大题共3个小题,共30分)24、(8分)在矩形ABCD中,AB=12,BC=25,P是线段AB上一点(点P不与A,B重合),将△PBC沿直线PC折叠,顶点B的对应点是点G,CG,PG分别交线段AD于E,O.(1)如图1,若OP=OE,求证:AE=PB;(2)如图2,连接BE交PC于点F,若BE⊥CG.①求证:四边形BFGP是菱形;②当AE=9,求的值.25、(10分)把直线向上平移m个单位后,与直线的交点为点P.(1)求点P坐标用含m的代数式表示(2)若点P在第一象限,求m的取值范围.26、(12分)解下列方程:(1)(2)
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
根据二次根式的性质对A进行判断;根据二次根式的加减运算对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A、原式=3,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=25,所以C选项错误;D、原式==2,所以D选项正确.故选D.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2、B【解析】
由函数表达式是分式,考虑分式的分母不能为0,即可得到答案.【详解】解:∵函数,∴,∴;故选:B.本题考查了分式有意义的条件,解题的关键是掌握当函数表达式是分式时,考虑分式的分母不能为0.3、C【解析】
根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式,故③错误;④原式,故④错误,故选C.本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.4、B【解析】
根据菱形的性质利用勾股定理求得OB的长,从而得到BD的长,再根据菱形的面积公式即可求得其面积.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC,在Rt△AOB中,BO==6,则BD=2BO=12,故S菱形ABCD=AC×BD=1.故选:B.此题考查学生对菱形的性质及勾股定理的理解及运用.5、B【解析】
根据方程有增根得到x=3,将x=3代入化简后的整式方程中即可求出答案.【详解】将方程去分母得x-1=m,∵方程产生增根,∴x=3,将x=3代入x-1=m,得m=2,故选:B.此题考查分式方程的解的情况,分式方程的增根是使分母为0的未知数的值,正确理解增根是解题的关键.6、C【解析】
根据密铺的条件得,两多边形内角和必须凑出360°,进而判断即可.【详解】A.正方形的每个内角是,∴能密铺;B.正六边形每个内角是,∴能密铺;C.正八边形每个内角是,与无论怎样也不能组成360°的角,∴不能密铺;D.正十二边形每个内角是∴能密铺.故选:C.本题主要考查平面图形的镶嵌,根据平面镶嵌的原理:拼接点处的几个多边形的内角和恰好等于一个圆周角.7、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.8、B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、,,.【解析】
由二次根式的性质,得到,结合,即可求出整数m的值.【详解】解:∵,∴,∴,∵,∴,∴整数m的值为:,,;故答案为:,,.本题考查了二次根式的性质,以及解一元一次不等式,解题的关键是熟练掌握二次根式的性质,正确得到m的取值范围.10、4【解析】
利用平行四边形的性质和勾股定理易求AC的长,进而可求出BD的长.【详解】解:∵AC⊥BC,AB=CD=10,AD=6,
∴AC=CD2-AD2=102-62=8,
∵▱ABCD的对角线AC与BD相交于点O,
∴BO=DO,AO=CO=12AC=4,
∴OD=AD2+OA2=62本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD是解题关键.11、2【解析】
连接AC,∵四边形ABCD为菱形,∴AB=BC=4,A、C关于BD对称,∴连AM交BD于P,则PM+PC=PM+AP=AM,根据两点之间线段最短,AM的长即为PM+PC的最小值.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,又∵BM=CM,∴AM⊥BC,∴AM=,故答案为:2.本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,轴对称中的最短路径问题,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12、10%【解析】
设这种服装平均每件降价的百分率是x,则降一次价变为80(1-x),降两次价变为80(1-x)2,而这个值等于1.8,从而得方程,问题得解.【详解】解:设这种服装平均每件降价的百分率是x,由题意得
80(1-x)2=1.8
∴(1-x)2=0.81
∴1-x=0.9或1-x=-0.9
∴x=10%或x=1.9(舍)
故答案为10%.本题是一元二次方程的基本应用题,明白降两次价变为原来的(1-x)2倍是解题的关键.13、1【解析】
平移的距离为线段BE的长求出BE即可解决问题;【详解】∵BC=EF=5,EC=3,∴BE=1,∴平移距离是1,故答案为:1.本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题(本大题共5个小题,共48分)14、(1)y甲、y乙与x的函数关系式分别为:y甲=700x+2000,y乙=800x+1600;(2)当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社相等.【解析】
(1)根据甲旅行社的收费=两名家长的全额费用+学生的七折费用,可得到y1与x的函数关系式;再根据乙旅行社的收费=两名家长的八折费用+学生的八折费用,可得到y2与x的函数关系式;(2)根据题意知:y甲<y乙时,可以确定学生人数,选择甲旅行社更省钱.【详解】试题解析:(1)由题意得:=2000+1000×0.7x=700x+2000,=2000×0.8+1000×0.8x=800x+1600;(2)当<时,即:700x+2000<800x+1600解得:x>4,当>时,即:700x+2000>800x+1600解得:x<4,当=时,即:700x+2000=800x+1600解得:x=4,答:当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社一样.考点:一次函数的应用.15、(1)∠ABD=60°;(3)BE=1.【解析】(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形.∴∠ABD=60°.(3)由(1)可知BD=AB=3.又∵O为BD的中点,∴OB=3.∵OE⊥AB,∠ABD=60°,∴∠BOE=30°.∴.16、(1)答案见解析;(2)<1.【解析】
(1)作出函数图象即可;(2)观察图象即可求解.【详解】(1)画图如下:(2)由图可知,当x<1时,y>1.本题考查了一次函数图象与性质,一次函数与不等式之间的关系,利用数形结合思想解题是解决此类题型的关键.17、(1)BD∥AC;(2);(3)【解析】
(1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;(2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出AC解析式.【详解】(1),,,,点B为线段OA的中点,点D为OC的中点,即BD为的中位线,;(2)如图1,作于点F,取AB的中点G,则,,BD与AC的距离等于2,,在中,,,点G为AB的中点,,是等边三角形,.,设,则,根据勾股定理得:,,,点C在x轴的正半轴上,点C的坐标为;(3)如图2,当四边形ABDE为平行四边形时,,,点D为OC的中点,,,,,点C在x轴的正半轴上,点C的坐标为,设直线AC的解析式为.将,得,解得:.直线AC的解析式为.此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.18、(1)见解析;(2)⊙O的直径EC=1.【解析】
(1)若要证明AB是⊙O的切线,则可连接AO,再证明AO⊥AB即可.
(2)连接OP,设OG为x,在直角三角形FCG中,由CF和角ACB为10°,利用10°角所对的直角边等于斜边的一半及勾股定理求出CG的长,即可表示出半径OC和OP的长,在直角三角形CGP中利用勾股定理表示出PG的长,然后在直角三角形OPG中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,然后求出直径即可.【详解】证明:(1)连接AO,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=10°,∵AO=CO,∴∠0AC=∠OCA=10°,∴∠BAO=120°-10°=90°,∵OA是半径∴AB是⊙O的切线;(2)解:连接OP,∵PF⊥BC,∴∠FGC=∠EGP=90°,∵CF=2,∠FCG=10°,∴FG=1,∴在Rt△FGC中CG=∵CP=1.∴Rt△GPC中,PG=设OG=x,则OC=x+,连接OP,,显然OP=OC=x+在Rt△OPG中,由勾股定理知即(x+)2=x2+()2∴x.∴⊙O的直径EC=EG+CG=2x++=1.故答案为:(1)见解析;(2)⊙O的直径EC=1.本题考查圆的切线的判定,常用的切线的判定方法是连接圆心和某一点再证垂直.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
根据菱形性质,得到∠ADC=∠B=70°,从而得出∠AED=∠ADE,又因为AD∥BC,得到∠DAE=∠AEB,进而求出∠ADE=∠AED=55°,从而得到∠EDC【详解】∵四边形ABCD为菱形,∴∠ADC=∠B=70°,AD∥BC,AD=AB∵AD=AB=AE,∴∠AED=∠ADE∵AD∥BC,∴∠DAE=∠AEB=70°∴∠ADE=∠AED=(180°-∠DAE)÷2=55°∴∠EDC=70°-∠ADE=70°-55°=15°本题主要考查菱形的基本性质,在计算过程中综合运用了等边对等角,三角形内角和定理等知识点20、25【解析】
根据平行四边形的性质得到BD=BA,根据全等三角形的性质得到AM=DN,推出△AMP是等腰直角三角形,得到∠MAP=∠APM=45°,根据三角形的外角的性质可得出答案.【详解】解:在平行四边形ABCD中,
∵AB=CD,
∵BD=CD,
∴BD=BA,
又∵AM⊥BD,DN⊥AB,
∴∠AMB=∠DNB=90°,
在△ABM与△DBN中,
∴△ABM≌△DBN(AAS),
∴AM=DN,
∵PM=DN,
∴AM=PM,
∴△AMP是等腰直角三角形,
∴∠MAP=∠APM=45°,
∵AB∥CD,
∴∠ABD=∠CDB=70°,
∴∠PAB=∠ABD-∠P=25°,
故答案为:25.本题考查了平行四边形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,熟练掌握性质和判定是解题的关键.21、4【解析】
由平行四边形ABCD的对角线相交于点O,,根据线段垂直平分线的性质,可得AM=CM,又由平行四边形ABCD的周长为8,可得AD+CD的长,继而可得△CDE的周长等于AD+CD.【详解】∵四边形ABCD是平行四边形∴OB=OD,AB=CD,AD=BC∵平行四边形ABCD的周长为8∴AD+CD=4∵∴AM=CM∴△CDE的周长为:CD+CM+DM=CD+AM+DM=AD+CD=4.故答案为:4本题主要考查了平行四边形的性质,线段垂直平分线的性质。22、a=2或a<06或2【解析】
可令y1=2x2,y2=a(x-t)2可分两种情况:①当y1与y2关于x=2对称时,可求出相应的a值为2,t值为6;②由于y1=2x2恒大于零,此时若y2恒小于零时,a<0,可得y2对称轴为x=2,即可求出相应的t值.【详解】解:设y1=2x2,y2=a(x﹣t)2①当y1与y2关于x=2对称时,可得a=2,t=6②在y=min{y1,y2}(x≠0)中,y1与y2没重合部分,即无论x为何值,y=y2即y2恒小于等于y1,那么由于y对x=2对称,也即y2对于x=2对称,得a<0,t=2.综上所述,a=2或a<0,对应的t值为6或2故答案为:a=2或a<0,6或2本题考查的是二次函数的图象与几何变换,先根据题意求出a的值是解答此题的关键.23、(-1,2)【解析】
关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.【详解】关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.故Q坐标为(-1,2).故答案为:(-1,2).此题考查的是关于y轴对称的两点坐标的特点,掌握两点关于坐标轴或原点对称坐标特点是解决此题的关键.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)①见解析;②【解析】
(1)由折叠的性质可得PB=PG,∠B=∠G=90°,由“AAS”可证△AOP≌△GOE,可得OA=GO,即可得结论;(2)①由折叠的性质可得∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,BF=FG,由平行线的性质可得∠BPF=∠BFP=∠GPC,可得BP=BF,即可得结论;②由勾股定理可求BE的长,EC的长,由相似三角形的性质可得,可求BF=BP=5x=,由勾股定理可求PC的长,即可求解.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 名著《海的女儿》读后感(24篇)
- 初中高知识练习测试卷
- 2024安全管理技术竞赛(单选)练习试卷附答案(一)
- 专题六搜索引擎营销(课件)职教高考电子商务专业《网络营销实务》
- 公共英语第一学期 《英语e通语法》复习要点
- 第1章 培训概述 课件
- 新生儿游泳及抚触课件
- 2024届上海市宝山区罗店中学高考数学试题二轮优化提升专题训练
- 关于十九教学课件
- 5年中考3年模拟试卷初中道德与法治九年级下册08中考道德与法治真题分项精练(八)
- 国开2024年秋《生产与运作管理》形成性考核1-4答案
- 科大讯飞促销活动方案
- 医务人员授权、再授权管理办法
- 2022年1月浙江首考英语读后续写精深分析与下水范例
- 人教版小学语文《搭石》评课稿
- 【大学英语】大学英语四级选修课程介绍
- 中央空调多联机施工方案(完整版)
- (完整版)移动脚手架专项施工方案
- 走访慰问老干部调查报告
- 创意蓝色医疗医院实用最新简约实验室安全培训授课PPT课件
- N1听力必备词汇
评论
0/150
提交评论