版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年山西省阳泉市重点中学高三高考适应性月考数学试题(一)注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的公差不为零,且,,构成新的等差数列,为的前项和,若存在使得,则()A.10 B.11 C.12 D.132.已知函数则函数的图象的对称轴方程为()A. B.C. D.3.已知函数在上有两个零点,则的取值范围是()A. B. C. D.4.若直线与圆相交所得弦长为,则()A.1 B.2 C. D.35.若集合,,则=()A. B. C. D.6.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为()A. B. C. D.7.已知为虚数单位,实数满足,则()A.1 B. C. D.8.已知集合,则()A. B. C. D.9.已知实数满足则的最大值为()A.2 B. C.1 D.010.已知复数是纯虚数,其中是实数,则等于()A. B. C. D.11.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则()A. B. C. D.12.己知,,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是定义在上的偶函数,其导函数为.若时,,则不等式的解集是___________.14.执行如图所示的伪代码,若输出的y的值为13,则输入的x的值是_______.15.已知函数,令,,若,表示不超过实数的最大整数,记数列的前项和为,则_________16.若函数为奇函数,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:日期1234567全国累计报告确诊病例数量(万人)1.41.72.02.42.83.13.5(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系?(2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.参考数据:,,,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:,.18.(12分)已知函数(),不等式的解集为.(1)求的值;(2)若,,,且,求的最大值.19.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,求四面体的体积.20.(12分)如图是圆的直径,垂直于圆所在的平面,为圆周上不同于的任意一点(1)求证:平面平面;(2)设为的中点,为上的动点(不与重合)求二面角的正切值的最小值21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线极坐标方程为.若直线交曲线于,两点,求线段的长.22.(10分)已知点为椭圆上任意一点,直线与圆交于,两点,点为椭圆的左焦点.(1)求证:直线与椭圆相切;(2)判断是否为定值,并说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.【详解】由,,构成等差数列可得即又解得:又所以时,.故选:D【点睛】本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.2.C【解析】
,将看成一个整体,结合的对称性即可得到答案.【详解】由已知,,令,得.故选:C.【点睛】本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.3.C【解析】
对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【详解】∵,.当时,,在上单调递增,不合题意.当时,,在上单调递减,也不合题意.当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.4.A【解析】
将圆的方程化简成标准方程,再根据垂径定理求解即可.【详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.5.C【解析】试题分析:化简集合故选C.考点:集合的运算.6.C【解析】
由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.【详解】当时,则,,所以,,显然当时,,故,,若对于任意正整数不等式恒成立,即对于任意正整数恒成立,即对于任意正整数恒成立,设,,令,解得,令,解得,考虑到,故有当时,单调递增,当时,有单调递减,故数列的最大值为,所以.故选:C.【点睛】本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.7.D【解析】,则故选D.8.C【解析】
解不等式得出集合A,根据交集的定义写出A∩B.【详解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故选C.【点睛】本题考查了解不等式与交集的运算问题,是基础题.9.B【解析】
作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.10.A【解析】
对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【详解】因为为纯虚数,所以,得所以.故选A项【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.11.B【解析】
设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,,,,,,,,可得,,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.12.B【解析】
先将三个数通过指数,对数运算变形,再判断.【详解】因为,,所以,故选:B.【点睛】本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
构造,先利用定义判断的奇偶性,再利用导数判断其单调性,转化为,结合奇偶性,单调性求解不等式即可.【详解】令,则是上的偶函数,,则在上递减,于是在上递增.由得,即,于是,则,解得.故答案为:【点睛】本题考查了利用函数的奇偶性、单调性解不等式,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.14.8【解析】
根据伪代码逆向运算求得结果.【详解】输入,若,则,不合题意若,则,满足题意本题正确结果:【点睛】本题考查算法中的语言,属于基础题.15.4【解析】
根据导数的运算,结合数列的通项公式的求法,求得,,,进而得到,再利用放缩法和取整函数的定义,即可求解.【详解】由题意,函数,且,,可得,,又由,可得为常数列,且,数列表示首项为4,公差为2的等差数列,所以,其中数列满足,所以,所以,又由,可得数列的前n项和为,数列的前n项和为,所以数列的前项和为,满足,所以,即,又由表示不超过实数的最大整数,所以.故答案为:4.【点睛】本题主要考查了函数的导数的计算,以及等差数列的通项公式,累加法求解数列的通项公式,以及裂项法求数列的和的综合应用,着重考查了分析问题和解答问题的能力,属于中档试题.16.-2【解析】
由是定义在上的奇函数,可知对任意的,都成立,代入函数式可求得的值.【详解】由题意,的定义域为,,是奇函数,则,即对任意的,都成立,故,整理得,解得.故答案为:.【点睛】本题考查奇函数性质的应用,考查学生的计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)可以用线性回归模型拟合与的关系;(2),预测2月10日全国累计报告确诊病例数约有4.5万人.【解析】
(1)根据已知数据,利用公式求得,再根据的值越大说明它们的线性相关性越高来判断.(2)由(1)的相关数据,求得,,写出回归方程,然后将代入回归方程求解.【详解】(1)由已知数据得,,,所以,,所以.因为与的相关近似为0.99,说明它们的线性相关性相当高,从而可以用线性回归模型拟合与的关系.(2)由(1)得,,,所以,关于的回归方程为:,2月10日,即代入回归方程得:.所以预测2月10日全国累计报告确诊病例数约有4.5万人.【点睛】本题主要考查线性回归分析和回归方程的求解及应用,还考查了运算求解的能力,属于中档题.18.(1)(2)32【解析】
利用绝对值不等式的解法求出不等式的解集,得到关于的方程,求出的值即可;由知可得,,利用三个正数的基本不等式,构造和是定值即可求出的最大值.【详解】(1)∵,,所以不等式的解集为,即为不等式的解集为,∴的解集为,即不等式的解集为,化简可得,不等式的解集为,所以,即.(2)∵,∴.又∵,,,∴,当且仅当,等号成立,即,,时,等号成立,∴的最大值为32.【点睛】本题主要考查含有两个绝对值不等式的解法和三个正数的基本不等式的灵活运用;其中利用构造出和为定值即为定值是求解本题的关键;基本不等式取最值的条件:一正二定三相等是本题的易错点;属于中档题.19.(1)证明见解析;(2).【解析】
(1)取中点,连接,根据等腰三角形的性质得到,利用全等三角形证得,由此证得平面,进而证得平面平面.(2)由(1)知平面,即是四面体的面上的高,结合锥体体积公式,求得四面体的体积.【详解】(1)证明:如图,取中点,连接,由则,则,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面体的面上的高,且.在中,,由勾股定理易知故四面体的体积【点睛】本小题主要考查面面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,属于中档题.20.(1)见解析(2)【解析】
(1)推导出,,从而平面,由面面垂直的判定定理即可得证.(2)过作,以为坐标原点,建立如图所示空间坐标系,设,利用空间向量法表示出二面角的余弦值,当余弦值取得最大时,正切值求得最小值;【详解】(1)因为,面,,平面,平面,平面,又平面,平面平面;(2)过作,以为坐标原点,建立如图所示空间坐标系,则,设,则平面的一个法向量为设平面的一个法向量为则,即,令,如图二面角的平面角为锐角,设二面角为,则,时取得最大值,最大值为,则最小值为【点睛】本题考查面面垂直的证明,利用空间向量法解决立体几何问题,属于中档题.21.【解析】
由,化简得,由,所以直线的直角坐标方程为,因为曲线的参数方程为,整理得,直线的方程与曲线的方程联立,,整理得,设,则,根据弦长公式求解即可.【详解】由,化简得,又因为,所以直线的直角坐标方程为,因为曲线的参数方程为,消去,整理得,将直线的方程与曲线的方程联立,,消去,整理得,设,则,所以,将,代入上式,整理得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房产婚内赠与合同范例
- 某民间借贷合同范例
- 借款电子合同范例英文
- 工厂中介服务合同范例
- 外墙施工安全沟通合同
- 拟建项目合同模板
- 月结付款合同范例
- 2024年海口道路客运输从业资格证考试
- 批发代收代卖合同范例
- 拆旧承揽合同范例
- 2023医疗质量安全核心制度要点释义(第二版)对比版
- DB34∕T 4317-2022 商业秘密保护规范
- 房地产未成交原因分析及解决方案
- 《中国民间故事》整本书阅读 课件 五年级上册语文(统编版) 五年级上册语文整本书阅读 导读课件+讲义+阅读检测(统编版)
- 2024年新人教版七年级上册英语教学课件 Unit 4Reading Plus Unit 4
- 2024年保育员(初级)考试题及答案
- 浙江丽水2023年中考语文现代文阅读真题及答案
- 体验民间艺术表演 课件 -2024-2025学年赣美版(2024)初中美术七年级上册
- 9古代科技耀我中华第一课时(教学设计)部编版道德与法治五年级上册
- 信息化系统安全运维服务方案三篇
- 2024年中央企业全面质量管理知识竞赛考试真题库(含答案)
评论
0/150
提交评论