版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省定远县启明中学高二数学第一学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三个观测点,在的正北方向,相距,在的正东方向,相距.在某次爆炸点定位测试中,两个观测点同时听到爆炸声,观测点晚听到,已知声速为,则爆炸点与观测点的距离是()A. B.C. D.2.瑞士数学家欧拉(LeonhardEuler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.后人称这条直线为欧拉线.已知△ABC的顶点,其欧拉线方程为,则顶点C的坐标是()A.() B.()C.() D.()3.已知x,y满足约束条件,则的最大值为()A.3 B.C.1 D.4.双曲线的光学性质为:如图①,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线新闻灯”的轴截面是双曲线的一部分,如图②,其方程为,为其左、右焦点,若从右焦点发出的光线经双曲线上的点和点反射后,满足,,则该双曲线的离心率为()A. B.C. D.5.某商场有四类食品,其中粮食类、植物油类、动物性食品类以及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5C.6 D.76.已知双曲线离心率为2,过点的直线与双曲线C交于A,B两点,且点P恰好是弦的中点,则直线的方程为()A. B.C. D.7.若关于x的方程有解,则实数的取值范围为()A. B.C. D.8.在三棱柱中,,,,则这个三棱柱的高()A1 B.C. D.9.设变量x,y满足约束条件则目标函数的最小值为()A.3 B.1C.0 D.﹣110.已知、分别是双曲线的左、右焦点,为一条渐近线上的一点,且,则的面积为()A. B.C. D.111.如图所示,在平行六面体中,,,,点是的中点,点是上的点,且,则向量可表示为()A. B.C. D.12.已知点是双曲线的左、右焦点,以线段为直径的圆与双曲线在第一象限的交点为,若,则()A.与双曲线的实轴长相等B.的面积为C.双曲线的离心率为D.直线是双曲线的一条渐近线二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的离心率为2,则此双曲线的渐近线方程___________.14.已知双曲线的左,右焦点分别为,P是该双曲线右支上一点,且(O为坐标原点),,则双曲线C的离心率为__________15.已知数列满足下列条件:①数列是等比数列;②数列是单调递增数列;③数列的公比满足.请写出一个符合条件的数列的通项公式__________.16.甲乙两艘轮船都要在某个泊位停靠8个小时,假定它们在一昼夜的时间段内随机地到达,则两船中有一艘在停靠泊位时、另一艘船必须等待的概率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的图像为曲线,点、.(1)设点为曲线上在第一象限内的任意一点,求线段的长(用表示);(2)设点为曲线上任意一点,求证:为常数;(3)由(2)可知,曲线为双曲线,请研究双曲线的性质(从对称性、顶点、渐近线、离心率四个角度进行研究).18.(12分)已知椭圆C:的上顶点与椭圆的左右顶点连线的斜率之积为-.(1)求椭圆C的离心率(2)点M(,)在椭圆C上,椭圆的左顶点为D,上顶点为B,点A的坐标为(1,0),过点D的直线L与椭圆在第一象限交于点P,与直线AB交于点Q设L的斜率为k,若,求k的值.19.(12分)如图,已知直三棱柱中,,,E,F分别为AC和的中点,D为棱上的一点.(1)证明:;(2)当平面DEF与平面所成的锐二面角的余弦值为时,求点B到平面DFE距离.20.(12分)已知数列满足,(1)证明是等比数列,(2)求数列的前项和21.(12分)已知抛物线上任意一点到焦点F最短距离为2,(1)求抛物线C的方程;(2)过焦点F的直线,互相垂直,且与C分别交于A,B,M,N四点,求四边形AMBN面积的最小值22.(10分)在中,,,请再从条件①、条件②这两个条件中选择一个作为已知,然后解答下列问题.(1)求角的大小;(2)求的面积.条件①:;条件②:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意作出示意图,然后结合余弦定理解三角形即可求出结果.【详解】设爆炸点为,由于两个观测点同时听到爆炸声,则点位于的垂直平分线上,又在的正东方向且观测点晚听到,则点位于的左侧,,,,设,则,解得,则爆炸点与观测点的距离为,故选:D.2、A【解析】根据题意,求得的外心,再根据外心的性质,以及重心的坐标,联立方程组,即可求得结果.【详解】因为,故的斜率,又的中点坐标为,故的垂直平分线的方程为,即,故△的外心坐标即为与的交点,即,不妨设点,则,即;又△的重心的坐标为,其满足,即,也即,将其代入,可得,,解得或,对应或,即或,因为与点重合,故舍去.故点的坐标为.故选:A.3、A【解析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可.【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.故选:A【点睛】方法点睛:求线性目标函数的最值,当时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.4、C【解析】连接,已知条件为,,设,由双曲线定义表示出,用已知正切值求出,再由双曲线定义得,这样可由勾股定理求出(用表示),然后在中,应用勾股定理得出的关系,求得离心率【详解】易知共线,共线,如图,设,,则,由得,,又,所以,,所以,所以,由得,因为,故解得,则,在中,,即,所以故选:C5、C【解析】按照分层抽样的定义进行抽取.【详解】按照分层抽样的定义有,粮食类:植物油类:动物性食品类:果蔬类=4:1:3:2,抽20个出来,则粮食类8个,植物油类2个,动物性食品类6个,果蔬类4个,则抽取的植物油类与果蔬类食品种数之和是6个.故选:C.6、C【解析】运用点差法即可求解【详解】由已知得,又,,可得.则双曲线C的方程为.设,,则两式相减得,即.又因为点P恰好是弦的中点,所以,,所以直线的斜率为,所以直线的方程为,即.经检验满足题意故选:C7、C【解析】将对数方程化为指数方程,用x表示出a,利用基本不等式即可求a的范围【详解】,,当且仅当时取等号,故故选:C8、D【解析】先求出平面ABC的法向量,然后将高看作为向量在平面ABC的法向量上的投影的绝对值,则答案可求.【详解】设平面ABC的法向量为,而,,则,即有,不妨令,则,故,设三棱柱的高为h,则,故选:D.9、C【解析】线性规划问题,作出可行域后,根据几何意义求解【详解】作出可行域如图所示,,数形结合知过时取最小值故选:C10、A【解析】先表示出渐近线方程,设出点坐标,利用,解出点坐标,再按照面积公式求解即可.【详解】由题意知,双曲线渐近线方程为,不妨设在上,设,由得,解得,的面积为.故选:A.11、D【解析】根据空间向量加法和减法的运算法则,以及向量的数乘运算即可求解.【详解】解:因为在平行六面体中,,,,点是的中点,点是上的点,且,所以,故选:D.12、B【解析】由题意及双曲线的定义可得,的值,进而可得A不正确,计算可判断B正确,再求出,的关系可得C不正确,求出,的关系,进而求出渐近线的方程,可得D不正确【详解】因为,又由题意及双曲线的定义可得:,则,,所以A不正确;因为在以为直径的圆上,所以,所以,所以B正确;在△中,由勾股定理可得,即,所以离心率,所以C不正确;由C的分析可知:,故,所以渐近线的方程为,即,所以D不正确;故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据离心率得出,结合得出关系,即可求出双曲线的渐近线方程.【详解】解:由题可知,离心率,即,又,即,则,故此双曲线的渐近线方程为.故答案为:.14、【解析】由已知及向量数量积的几何意义易知,根据双曲线的性质可得,再由双曲线的定义及勾股定理构造关于双曲线参数的齐次方程求离心率.【详解】∵,∴△为等腰三角形且,又,∴,∴.又,,∴,则,可得,∴双曲线C的离心率为故答案为:.15、(答案不唯一)【解析】根据题意判断数列特征,写出一个符合题意的数列的通项公式即可.【详解】因为数列是等比数列,数列是单调递增数列,数列公比满足,所以等比数列公比,且各项均为负数,符合题意的一个数列的通项公式为.故答案为:(答案不唯一)16、【解析】利用几何概型的面积型概率计算,作出边长为24的正方形面积,求出部分的面积,即可求得答案.【详解】设甲乙两艘轮船到达的时间分为,则,记事件为两船中有一艘在停靠泊位时、另一艘船必须等待,则,即∴.故答案为:.【点睛】本题考查几何概型,考查转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意对概率模型的抽象成面积型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)具体见解析;(3)具体见解析.【解析】(1)由两点间的距离公式求出距离,进而将式子化简即可;(2)求出,进而讨论两种情况,然后结合基本不等式即可证明问题;(3)根据为双曲线的焦点,结合双曲线的图形特征即可求得该双曲线的相关性质.【小问1详解】由题意,.【小问2详解】设,由(1),.若x>0,则,当且仅当时取“=”,则,,所以.若x<0,则,当且仅当时取“=”,则,,所以.综上:,为常数.【小问3详解】易知函数:为奇函数,则其图象关于原点对称.由(2)可知,曲线为双曲线,为双曲线的焦点,则它关于直线对称,还关于与垂直且过原点的直线对称.,则,易得.综上:双曲线关于原点(0,0)对称,且关于直线对称.容易知道,直线是双曲线C的渐近线.易知线段是双曲线的实轴,将代入双曲线解得顶点:.于是实轴长为焦距为,则离心率.18、(1)(2)1【解析】(1)根据椭圆的上顶点与椭圆的左右顶点连线的斜率之积为-,由求解;(2)根据点M(,)在椭圆C上,顶点,再由,求得椭圆方程,由,结合,得到,设直线方程为,与椭圆方程联立,求得点P的坐标,再由,求得Q的坐标,代入求解.【小问1详解】解:设椭圆C:的上顶点为,左顶点为,右顶点为,因为椭圆的上顶点与椭圆的左右顶点连线的斜率之积为-,所以,即,又所以,解得;【小问2详解】因为点M(,)在椭圆C上,所以,又,解得,所以椭圆方程为,,则,因为,所以,又,所以,则,设,则,当时,则,不合题意;当时,设直线方程为,与题意方程联立,消去y得:则,所以,则,因为,由,得,因为,所以,化简得,因,则.19、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,利用向量法证得.(2)利用平面DEF与平面所成的锐二面角的余弦值列方程,求得,结合向量法求得到平面的距离.【小问1详解】以B为坐标原点,为x轴正方向建立如图所示的建立空间直角坐标系.设,可得,,,.,.因为,所以.【小问2详解】,设为平面DEF的法向量,则,即,可取.因为平面的法向量为,所以.由题设,可得,所以.点B到DFE平面距离.20、(1)见解析;(2)【解析】(1)利用定义法证明是一个与n无关的非零常数,从而得出结论;(2)由(1)求出,利用分组求和法求【详解】(1)由得,所以,所以是首项为,公比为的等比数列,,所以,(2)由(1)知的通项公式为;则所以【点睛】本题主要考查等比数列的证明以及分组求和法,属于基础题21、(1)(2)128【解析】(1)设抛物线上任一点为,由可得答案.(2)由题意可知,的斜率k存在且不为0,设出其方程并与抛物线方程联立,得出韦达定理,从而得出弦长的表达式,同理得出弦长的表达式,进而得出四边形AMBN面积的不等式,从而求出其最小值.【小问1详解】设抛物线上任一点为,则,所以当时,,又∵,∴,即所以抛物线C的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乘法除法数学应用题
- 拍摄教学 课程设计
- 三相电机异地课程设计
- 皮带断带保护课程设计
- 2024年毛皮服装及其附件项目规划申请报告模范
- 2024年农用抗生素项目规划申请报告模范
- 2024年油污清洁剂项目申请报告模范
- 支票簿项目评价分析报告
- 篮球教学设计
- 2024年协同管理软件项目申请报告模范
- 融资融券知识测评题目+答案
- 多彩的情绪世界教学课件(小学生心理健康课)
- 安防工程施工组织方案
- 中华人民共和国企业所得税年度纳税申报表(A类)
- 高一职高期中考试数学试题(2份)
- 高职院校“氢能技术应用”专业建设探讨
- GB/T 17410-2023有机热载体炉
- 抖音直播商业模式研究5000字【(论文)】
- 《深刻理解和把握“两个结合”》全文PPT
- 部编版五年级语文上册第15课《小岛》优质课件
- 废矿物油资源综合利用项目可行性研究报告
评论
0/150
提交评论