恩施市重点中学2025届高二数学第一学期期末教学质量检测试题含解析_第1页
恩施市重点中学2025届高二数学第一学期期末教学质量检测试题含解析_第2页
恩施市重点中学2025届高二数学第一学期期末教学质量检测试题含解析_第3页
恩施市重点中学2025届高二数学第一学期期末教学质量检测试题含解析_第4页
恩施市重点中学2025届高二数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

恩施市重点中学2025届高二数学第一学期期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆:与双曲线:有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则的最大值为()A. B.C. D.2.在等比数列中,若,则公比()A. B.C.2 D.33.已知命题p:,,则()A., B.,C., D.,4.若曲线f(x)=x2的一条切线l与直线平行,则l的方程为()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=05.已知点B是A(3,4,5)在坐标平面xOy内的射影,则||=()A. B.C.5 D.56.已知对任意实数,有,且时,则时A. B.C. D.7.已知等差数列的前项和为,且,,则()A.3 B.5C.6 D.108.圆的圆心和半径分别是()A. B.C. D.9.已知双曲线的右焦点为,以为圆心,以为半径的圆与双曲线的一条渐近线交于,两点,若(为坐标原点),则双曲线的离心率为().A. B.C. D.10.如图,在直三棱柱中,AB=BC,,若棱上存在唯一的一点P满足,则()A. B.1C. D.211.已知,,则在上的投影向量为()A.1 B.C. D.12.已知命题:△中,若,则;命题:函数,,则的最大值为.则下列命题是真命题的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数极值点的个数是______14.如图,抛物线上的点与轴上的点构成等边三角形,,,其中点在抛物线上,点的坐标为,,猜测数列的通项公式为________15.拋物线的焦点坐标为___________.16.若命题“”是假命题,则a的取值范围是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程18.(12分)已知等差数列的前n项和为,且,(1)求数列的通项公式;(2)若,求k的值19.(12分)已知函数的图象在点P(0,f(0))处的切线方程是(1)求a、b的值;(2)求函数的极值.20.(12分)已知椭圆过点,且离心率,为坐标原点.(1)求椭圆的方程;(2)判断是否存在直线,使得直线与椭圆相交于两点,直线与轴相交于点,且满足,若存在,求出直线的方程;若不存在,请说明理由.21.(12分)已知抛物线的焦点为F,其中P为E的准线上一点,O是坐标原点,且(1)求抛物线E的方程;(2)过的直线与E交于C,D两点,在x轴上是否存在定点,使得x轴平分?若存在,求出点M的坐标;若不存在,请说明理由22.(10分)已知椭圆的左焦点为F,右顶点为,M是椭圆上一点.轴且(1)求椭圆C的标准方程;(2)直线与椭圆C交于E,H两点,点G在椭圆C上,且四边形平行四边形(其中O为坐标原点),求

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】不妨设点为第一象限的交点,结合椭圆与双曲线的定义得到,进而结合余弦定理得到,即,令然后结合三角函数即可求出结果.【详解】不妨设点为第一象限的交点,则由椭圆的定义可得,由双曲线的定义可得,所以,因此,即,所以,即,令因此,其中,所以当时,有最大值,最大值为,故选:B.【点睛】一、椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)二、双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)2、C【解析】由题得,化简即得解.【详解】因为,所以,所以,解得.故选:C3、C【解析】由全称命题的否定:将任意改存在并否定结论,即可写出原命题p的否定.【详解】由全称命题的否定为特称命题,∴是“,”.故选:C.4、D【解析】设切点为,则切线的斜率为,然后根据条件可得的值,然后可得答案.【详解】设切点为,因为,所以切线的斜率为因为曲线f(x)=x2的一条切线l与直线平行,所以,即所以l的方程为,即故选:D5、C【解析】先求出B(3,4,0),由此能求出||【详解】解:∵点B是点A(3,4,5)在坐标平面Oxy内的射影,∴B(3,4,0),则||==5故选:C6、B【解析】,所以是奇函数,关于原点对称,是偶函数,关于y轴对称,时则都是增函数,由对称性可知时递增,递减,所以考点:函数奇偶性单调性7、B【解析】根据等差数列的性质,以及等差数列的前项和公式,由题中条件,即可得出结果.【详解】因为数列为等差数列,由,可得,,则.故选:B.【点睛】本题主要考查等差数列的性质,以及等差数列前项和的基本量运算,属于基础题型.8、B【解析】将圆的方程化成标准方程,即可求解.【详解】解:.故选:B.9、A【解析】设双曲线的一条渐近线方程为,为的中点,可得,由,可知为的三等分点,用两种方式表示,可得关于的方程组,结合即可得到双曲线的离心率.【详解】设双曲线的一条渐近线方程为,为的中点,可得,由到渐近线的距离为,所以,又,所以,因为,所以,整理可得:,即,所以,可得,所以,所以双曲线的离心率为,故选:A.10、D【解析】设,构建空间直角坐标系,令且,求出,,再由向量垂直的坐标表示列方程,结合点P的唯一性有求参数a,即可得结果.【详解】由题设,构建如下图空间直角坐标系,若,则,,且,所以,,又存在唯一的一点P满足,所以,则,故,可得,此时,所以.故选:D11、C【解析】根据题意得,进而根据投影向量的概念求解即可.【详解】解:因为,,所以,所以,所以在上的投影向量为故选:C12、A【解析】由三角形内角及正弦函数的性质判断、的真假,应用换元法令,结合对勾函数的性质确定的值域即知、的真假,根据各选项复合命题判断真假即可.【详解】由且,可得或,故为假命题,为真命题;令,又,则,故,∵在上递减,∴,故的最大值为.∴为真命题,为假命题;∴为真,为假,为假,为假.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】通过导数判断函数的单调性即可得极值点的情况.【详解】因为,,所以在上恒成立,所以在上单调递增,所以函数的极值点的个数是0,故答案为:0.14、【解析】求出,,,,,,可猜测,利用累加法,即可求解【详解】的方程为,代入抛物线可得,同理可得,,,,可猜测,证明:记三角形的边长为,由题意可知,当时,在抛物线上,可得,当时,,两式相减得:化简得:,则数列是等差数列,,,,,故答案为:15、【解析】化成抛物线的标准方程即可.【详解】由题意知,,则焦点坐标为.故答案为:16、【解析】依题意可得是真命题,参变分离得到,再利用基本不等式计算可得;【详解】解:因为命题“”是假命题,所以命题“”是真命题,即,所以,因为,当且仅当即时取等号,所以,即故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)根据椭圆的焦距为2,离心率为,求出,,即可求椭圆的方程;(2)设直线方程为,代入椭圆方程,由得,利用韦达定理,化简可得,求出,即可求直线的方程.试题解析:(1)设椭圆方程为,因为,所以,所求椭圆方程为.(2)由题得直线l的斜率存在,设直线l方程为y=kx+1,则由得,且.设,则由得,又,所以消去得,解得,,所以直线的方程为,即或.18、(1)(2)10【解析】(1)设等差数列的公差为d,利用已知建立方程组,解之可求得数列的通项公式;(2)利用等差数列的前项和公式,化简即可求解.【小问1详解】解:设等差数列的公差为d,由已知,,得,解得,则;小问2详解】解:由(1)得,则由,得或(舍去),所以的值为10.19、(1);(2)答案见解析【解析】(1)求出曲线的斜率,切点坐标,求出函数的导数,利用导函数值域斜率的关系,即可求出,(2)求出导函数的符号,判断函数的单调性即可得到函数的极值【详解】(1)因为函数的图象在点P(0,f(0))处的切线方程是,所以切线斜率是,且,求得,即点又函数,则所以依题意得解得(2)由(1)知所以令,解得或当,或;当,所以函数的单调递增区间是,,单调递减区间是所以当变化时,和变化情况如下表:0极大值极小值所以,20、(1);(2)存在,方程为和.【解析】(1)根据椭圆上的点、离心率和关系可构造方程求得,由此可得椭圆方程;(2)设,与椭圆方程联立可得韦达定理形式,根据共线向量可得,代入韦达定理中可构造关于的方程,解方程可求得,进而得到直线方程.【小问1详解】由题意得:,解得:,椭圆的方程为;【小问2详解】由题意知:直线斜率存在且不为零,可设,,,由得:,则;,,,,,解得:,,满足条件的直线存在,方程为和.21、(1)(2)存在;【解析】(1)设,利用向量坐标运算求出p即可;(2)设直线MC,MD的斜率分别为,,利用坐标计算恒成立,即可求解.【小问1详解】抛物线的焦点为,设,则,因为,所以,得所以抛物线E的方程为【小问2详解】假设在x轴上存在定点,使得x轴平分设直线的方程为,设点,,联立,可得∵恒成立,∴,设直线MC,MD的斜率分别为,,则由定点,使得x轴平分,则,所以把根与系数的关系代入可得,得故存在满足题意.综上所述

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论