版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市2025届高一数学第一学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点从点出发,按逆时针方向沿周长为的平面图形运动一周,,两点连线的距离与点走过的路程的函数关系如图所示,则点所走的图形可能是A. B.C. D.2.“,”是“函数的图象关于点中心对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知函数则的值为()A. B.0C.1 D.24.已知函数则()A.- B.2C.4 D.115.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.不等式的解集为()A.(-∞,1) B.(0,1)C.(,1) D.(1,+∞)7.已知实数集为,集合,,则A. B.C. D.8.已知函数是定义在R上的偶函数,且,当时,,则在区间上零点的个数为()A.2 B.3C.4 D.59.函数的零点个数为A.1 B.2C.3 D.410.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.用表示a,b中的较小者,则的最大值是____.12.已知函数若,则实数___________.13.某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为_____cm214.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________15.已知函数是定义在的偶函数,且在区间上单调递减,若实数满足,则实数的取值范围是__________16.若,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数且(1)判断函数的奇偶性;(2)判断函数在上的单调性,并给出证明;(3)当时,函数值域是,求实数与自然数的值18.已知平面向量,,,且,.(1)求和:(2)若,,求向量与向量的夹角的大小.19.2019年是中华人民共和国成立70周年,70年披荆斩棘,70年砥砺奋进,70年风雨兼程,70年沧桑巨变,勤劳勇敢的中国人用自己的双手创造了一项项辉煌的成绩,取得了举世瞩目的成就,为此,某市举行了“辉煌70年”摄影展和征文比赛,计划将两类获奖作品分别制作成纪念画册和纪念书刊,某公司接到制作300本画册和900本书刊的订单,已知该公司有50位工人,每位工人在1小时内可以制作完3本画册或5本书刊,现将全部工人分为两组,一组制作画册,另一组制作书刊,并同时开始工作,设制作画册的工人有x位,制作完画册所需时间为(小时),制作完书刊所需时间为(小时).(1)试比较与的大小,并写出完成订单所需时间(小时)的表达式;(2)如何分组才能使完成订单所需的时间最短?20.已知,当时,.(1)若函数的图象过点,求此时函数的解析式;(2)若函数只有一个零点,求实数a的值.21.已知的两顶点和垂心.(1)求直线AB的方程;(2)求顶点C的坐标;(3)求BC边的中垂线所在直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】认真观察函数图像,根据运动特点,采用排除法解决.【详解】由函数关系式可知当点P运动到图形周长一半时O,P两点连线的距离最大,可以排除选项A,D,对选项B正方形的图像关于对角线对称,所以距离与点走过的路程的函数图像应该关于对称,由图可知不满足题意故排除选项B,故选C【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力2、A【解析】先求出函数的图象的对称中心,从而就可以判断.【详解】若函数的图象关于点中心对称,则,,所以“,”是“函数的图象关于点中心对称”的充分不必要条件故选:A3、C【解析】将代入分段函数解析式即可求解.【详解】解:因为,所以,又,所以,故选:C.4、C【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【详解】由题意,函数,可得,所以.故选:C.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.5、A【解析】先判断“”成立时,“”是否成立,反之,再看“”成立,能否推出“”,即可得答案.【详解】“”成立时,,故“”成立,即“”是“”的充分条件;“”成立时,或,此时推不出“”成立,故“”不是“”的必要条件,故选:A.6、A【解析】根据对数的运算化简不等式,然后求解可得.【详解】因为,,所以原不等式等价于,即.故选:A7、C【解析】分析:先求出,再根据集合的交集运算,即可求解结果.详解:由题意,集合,所以,又由集合,所以,故选C.点睛:本题主要考查了集合的混合运算,熟练掌握集合的交集、并集、补集的运算是解答的关键,着重考查了推理与运算能力.8、C【解析】根据函数的周期性、偶函数的性质,结合零点的定义进行求解即可.【详解】因为,所以函数的周期为,当时,,即,因为函数是偶函数且周期为,所以有,所以在区间上零点的个数为,故选:C9、C【解析】令,得到,画出和的图像,根据两个函数图像交点个数,求得函数零点个数.【详解】令,得,画出和的图像如下图所示,由图可知,两个函数图像有个交点,也即有个零点.故选C.【点睛】本小题主要考查函数零点个数的判断,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于基础题.10、A【解析】利用充分条件和必要条件的定义判断即可【详解】,所以“”是“”的充分不必要条件故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分别做出和的图象,数形结合即可求解.【详解】解:分别做出和的图象,如图所示:又,当时,解得:,故当时,.故答案为:.12、2【解析】先计算,再计算即得解.【详解】解:,所以.故答案为:213、1【解析】设该扇形的半径为,根据题意,因为扇形的圆心角为弧度,周长为,则有,,故答案为.14、0【解析】由于正三角形的内角都为,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为,则斜率为,则边AC所在直线的倾斜角为,斜率为,所以AC,AB所在直线的斜率之和为15、【解析】先利用偶函数的性质将不等式化简为,再利用函数在上的单调性即可转化为,然后求得的范围.【详解】因为为R上偶函数,则,所以,所以,即,因为为上的减函数,,所以,解得,所以,的范围为.【点睛】1.函数值不等式的求法:(1)利用函数的奇偶性、特殊点函数值等性质将函数值不等式转化为与大小比较的形式:;(2)利用函数单调性将转化为自变量大小比较的形式,再求解不等式即可.
偶函数的性质:;奇函数性质:;
若在D上为增函数,对于任意,都有;若在D上为减函数,对于任意,都有.16、1【解析】由已知结合两角和的正切求解【详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【点睛】本题考查两角和的正切公式的应用,是基础的计算题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数,证明见解析;(2)答案见解析,证明见解析;(3),.【解析】(1)利用奇偶性定义判断奇偶性.(2)利用单调性定义,结合作差法、分类讨论思想求的单调性.(3)由题设得且,结合(2)有在上递减,结合函数的区间值域,求参数a、n即可.【小问1详解】由题设有,可得函数定义域为,,所以为奇函数.【小问2详解】令,则,又,则,当时,,即,则在上递增.当时,,即,则在上递减.【小问3详解】由,则,即,结合(2)知:在上递减且值域为,要使在值域是,则且,即,所以,又,故.综上,,【点睛】关键点点睛:第三问,注意,即有在上递减,再根据区间值域求参数.18、(1),;(2).【解析】(1)本题首先可根据、得出,然后通过计算即可得出结果;(2)本题首先可根据题意得出以及,然后求出、以及的值,最后根据向量的数量积公式即可得出结果.【详解】(1)因为,,,且,,所以,解得,故,.(2)因为,,所以,因为,,所以,,,,设与的夹角为,则,因为,所以,向量与向量的夹角为.【点睛】本题考查向量平行、向量垂直以及向量的数量积的相关性质,若、且,则,考查通过向量的数量积公式求向量的夹角,考查计算能力,是中档题.19、(1)当时,;当时,;;(2)安排18位工人制作画册,32位工人制作书刊,完成订单所需时间最短.【解析】(1)由题意得,,利用作差法可比较出与的大小,然后可得的表达式;(2)利用反比例函数的知识求出的最小值即可.【详解】(1)由题意得,,所以,.所以当时,;当时,,所以完成订单所需时间.(2)当时,为减函数,此时;当时,为增函数,此时.因为,所以当时,取得最小值.所以安排18位工人制作画册,32位工人制作书刊,完成订单所需时间最短.20、(1)(2)或.【解析】(1)由计算;(2)只有一个解,由对数函数性质转化为方程只有一个正根,分,和讨论【详解】(1),当时,.函数的图象过点,,解得,此时函数.(2),∵函数只有一个零点,只有一个正解,∴当时,,满足题意;当时,只有一个正根,若,解得,此时,满足题意;若方程有两个相异实根,则两根之积为,此时方程有一个正根,符合题意;综上,或.【点睛】本题考查函数零点与方程根的分布问题.解题时注意函数的定义域,在转化时要正确确定方程根的范围,对多项式方程,要按最高次项系数为0和不为0进行分类讨论21、(1);(2);(3).【解析】(1)由两点间的斜率公式求出,再代入其中一点,由点斜式求出直线的方程(也可直接代两点式求解);(2)由题可知,,借助斜率公式,进而可分别求出直线与直线的方程,再联立方程,即可求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 断路器市场环境与对策分析
- 北京交通大学《自然辩证法概论》2022-2023学年第一学期期末试卷
- 有领衬衫相关项目建议书
- 护肤品培训课程设计
- 8位流水灯设计课程设计
- 环卫专业课程设计
- 木鞋鞋市场环境与对策分析
- 环境监测课程设计实验
- 快速达成共识课程设计
- 机器马机械原理课程设计
- 关于对市县纪委监委派驻派驻机构改革的几点认识和建议(2)
- 上海科技出版社八年级上册信息技术教案
- NBA篮球术语中英文对照
- 水利风景区规划(纲要)编制要求
- 塔吊基础的设计和计算
- 中西高校对比PPT课件
- 屋面瓦施工工艺——干挂法(内容详细)
- 北师大版一年级数学上册(全册)单元教材分析
- 2020年拱墅区国投集团招聘《综合基础知识》试题及解析
- ICT软件开发外包合同.doc
- 阿克苏诺贝尔悬浮剂理论与实践
评论
0/150
提交评论