版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省临川2025届高二数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图像在点处的切线方程为()A. B.C. D.2.已知动圆过定点,并且与定圆外切,则动圆的圆心的轨迹是()A.抛物线 B.椭圆C.双曲线 D.双曲线的一支3.已知实数满足方程,则的最大值为()A.3 B.2C. D.4.已知空间向量,,且,则的值为()A. B.C. D.5.已知,命题“若,则,全为0”的否命题是()A.若,则,全不为0. B.若,不全为0,则.C.若,则,不全为0. D.若,则,全不为0.6.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆的内接四边形是矩形7.双曲线的一条渐近线方程为,则双曲线的离心率为()A.2 B.5C. D.8.若不等式在上有解,则的最小值是()A.0 B.-2C. D.9.已知a、b是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若a∥α,a∥b,则b∥α B.若a∥α,a∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥β D.若a⊥α,b⊥α,则a∥b10.已知椭圆的一个焦点坐标是,则()A.5 B.2C.1 D.11.已知命题p:,,则命题p的否定为()A., B.,C., D.,12.已知抛物线的焦点为F,点P为该抛物线上的动点,若,则当最大时,()A. B.1C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线C:的焦点为,点为上一点,,则为_____.14.已知向量,,若与垂直,则___________.15.已知实数满足,则的取值范围是____________16.以点为圆心,为半径的圆的标准方程是_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,,前10项和(1)求列通项公式;(2)若数列是首项为1,公比为2的等比数列,求的前8项和18.(12分)已知数列的前n项和为,,,其中.(1)记,求证:是等比数列;(2)设,数列的前n项和为,求证:.19.(12分)已知椭圆的左、右焦点分别为,,离心率为,过左焦点的直线l与椭圆C交于A,B两点,的周长为8(1)求椭圆C的标准方程;(2)如图,,是椭圆C的短轴端点,P是椭圆C上异于点,的动点,点Q满足,,求证与的面积之比为定值20.(12分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为6.(1)求抛物线的方程;(2)若不过原点的直线与抛物线交于A、B两点,且,求证:直线过定点并求出定点坐标.21.(12分)已知p:方程所表示的曲线为焦点在x轴上的椭圆;q:当时,函数恒成立.(1)若p为真,求实数t的取值范围;(2)若为假命题,且为真命题,求实数t的取值范围22.(10分)如图,在四棱锥中,底面为矩形,平面平面,.(1)证明:平面平面;(2)若,为棱的中点,,,求二面角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.详解】,,,,因此,所求切线的方程为,即.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题2、D【解析】结合双曲线定义的有关知识确定正确选项.【详解】圆圆心为,半径为,依题意可知,结合双曲线的定义可知,的轨迹为双曲线的一支.故选:D3、D【解析】将方程化为,由圆的几何性质可得答案.【详解】将方程变形为,则圆心坐标为,半径,则圆上的点的横坐标的范围为:则x的最大值是故选:D.4、B【解析】根据向量垂直得,即可求出的值.【详解】.故选:B.5、C【解析】根据四种命题的关系求解.【详解】因为否命题是否定原命题的条件和结论,所以命题“若,则,全为0”的否命题是:若,则,不全为0,故选:C6、B【解析】全称命题的否定特称命题,任意改为存在,把结论否定.【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.7、D【解析】根据渐近线方程求得关系,结合离心率的计算公式,即可求得结果.【详解】因为双曲线的一条渐近线方程为,则;又双曲线离心率.故选:D.8、D【解析】将题设条件转化为在上有解,然后求出的最大值即可得解.【详解】不等式在上有解,即为在上有解,设,则在上单调递减,所以,所以,即,故选:D.【点睛】本题主要考查二次不等式能成立问题,可以选择分离参数转化为最值问题,也可以进行分情况讨论.9、D【解析】根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能相交,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选:D.10、C【解析】根据题意椭圆焦点在轴上,且,将椭圆方程化为标准形式,从而得出,得出答案.【详解】由焦点坐标是,则椭圆焦点在轴上,且将椭圆化为,则由,焦点坐标是,则,解得故选:C11、D【解析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系可得:命题“p:,”的否定式为“,”.故选:D.12、B【解析】根据抛物线的定义,结合换元法、配方法进行求解即可.【详解】因为点P为该抛物线上的动点,所以点P的坐标设为,抛物线的焦点为F,所以,抛物线的准线方程为:,因此,令,,当时,即当时,有最大值,最大值为1,此时.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、14【解析】利用双曲线的定义求解即可【详解】由,得,则,因为点为上一点,所以,因为,所以,解得或(舍去),故答案为:1414、【解析】根据与垂直,可知,根据空间向量的数量积运算可求出的值,结合向量坐标求向量模的求法,即可得出结果.【详解】解:与垂直,,则,解得:,,则,.故答案为:.15、【解析】去绝对值分别列出每个象限解析式,数形结合利用距离求解范围.【详解】当,表示椭圆第一象限部分;当,表示双曲线第四象限部分;当,表示双曲线第二象限部分;当,不表示任何图形;以及两点,作出大致图象如图:曲线上的点到的距离为,根据双曲线方程可得第二四象限双曲线渐近线方程都是,与距离为2,曲线二四象限上的点到的距离为小于且无限接近2,考虑曲线第一象限的任意点设为到的距离,当时取等号,所以,则的取值范围是故答案为:16、【解析】直接根据已知写出圆的标准方程得解.【详解】解:由题得圆的标准方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)347.【解析】(1)设等差数列的公差为,解方程组即得解;(2)先求出,再分组求和得解.【详解】解:(1)设等差数列的公差为,则解得所以(2)由题意,,所以所以的前8项和为18、(1)证明见解析;(2)证明见解析.【解析】(1)应用的关系,结合构造法可得,根据已知条件及等比数列的定义即可证结论.(2)由(1)得,再应用错位相减法求,即可证结论.【小问1详解】证明:对任意的,,,时,,解得,时,因为,,两式相减可得:,即有,∴,又,则,因为,,所以,对任意的,,所以,因此,是首项和公比均为3的等比数列【小问2详解】由(1)得:,则,,,两式相减得:,化简可得:,又,∴.19、(1)(2)证明见解析【解析】(1)根据周长为8,求得a,再根据离心率求解;(2)方法一:设,,得到直线和直线的方程,联立求得Q的横坐标,根据在椭圆上,得到,然后代入Q的横坐标求解;方法二:设直线,的斜率分别为k,,点,,直线的方程为,与椭圆方程联立,求得点P横坐标,再由的直线方程联立,得到P,Q的横坐标的关系求解.【小问1详解】解:∵的周长为8,∴,即,∵离心率,∴,,∴椭圆C的标准方程为【小问2详解】方法一:设,则直线斜率,∵,∴直线斜率,∴直线的方程为:,同理直线的方程为:,联立上面两直线方程,消去y,得,∵在椭圆上,∴,即,∴,∴所以与的面积之比为定值4方法二:设直线,的斜率分别为k,,点,,则直线的方程为,∵,∴直线的方程为,将代入,得,∵P是椭圆上异于点,的点,∴,又∵,即,∴,即,由,得直线的方程为,联立得,∴所以与的面积之比为定值420、(1)(2)证明见解析,定点坐标为(8,0).【解析】(1)根据抛物线的定义,即可求出结果;(2)由题意直线方程可设为,将其与抛物线方程联立,再将转化为,根据韦达定理,化简求解,即可求出定点.【小问1详解】解:抛物线的顶点在原点,焦点在轴上,且抛物线上有一点,设抛物线的方程为,到焦点的距离为6,即有点到准线的距离为6,即解得,即抛物线的标准方程为;【小问2详解】证明:由题意知直线不能与轴平行,故直线方程可设为,与抛物线联立得,消去得,设,则,则,,由,可得,所以,即,亦即,又,解得,所以直线方程为,易得直线过定点.21、(1)(2)【解析】(1)由给定条件结合椭圆标准方程的特征列不等式求解作答.(2)求命题q真时的t值范围,再借助“或”联结的命题为真命题求解作答.【小问1详解】因方程所表示的曲线为焦点在x轴上的椭圆,则有,解得,所以实数t的取值范围是.【小问2详解】,则有,当且仅当,即时取“=”,即,因当时,函数恒成立,则,解得,命题q为真命题有,因为假命题,且为真命题,则与一真一假,当p真q假时,,当p假q真时,,所以实数t的取值范围是.22、(1)见解析;(2)【解析】分析:(1)由四边形为矩形,可得,再由已知结合面面垂直的性质可得平面,进一步得到,再由,利用线面垂直的判定定理可得面,即可证得平面;(2)取的中点,连接,以为坐标原点,建立如图所示的空间直角坐标系,由题得,解得.进而求得平面和平面的法向量,利用向量的夹角公式,即可求解二面角的余弦值.详解:(1)证明:∵四边形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)设BC中点为,连接,,又面面,且面面,所以面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)知PB⊥平面PCD,故PB⊥,设,可得所以由题得,解得.所以设是平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手部消毒剂市场环境与对策分析
- 2024年溶剂油项目立项申请报告模范
- 2024年水溶性肥项目提案报告模范
- 2024年高频电控气阀项目立项申请报告模范
- 晾衣架相关项目实施方案
- 2024年食品烘焙设备项目规划申请报告模范
- 2024年软体家具项目规划申请报告模范
- 2024年公路管理与养护服务项目提案报告模范
- 染发刷相关项目建议书
- 2024年水资源保护服务项目立项申请报告模范
- 临床输血管理工作流程图
- 骨关节疾病自测表
- 科学语文教育始于识字教学科学化
- 导游APP在智慧旅游中的应用研究
- 日本继续教育概况
- 高中英语语法教学设计
- 华师八上数学-因式分解练习题-华师大
- 水利工程 验收规程PPT课件
- 汽车4S店的涉税风险分析与几个涉税疑难问题处理
- 科斯的学术性著作:社会成本问题
- 员工岗位职责说明书
评论
0/150
提交评论