版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北邢台市高三数学第一学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在处取得极值2,则()A.-3 B.3 C.-2 D.22.已知函数,,若成立,则的最小值是()A. B. C. D.3.已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.4.函数f(x)=的图象大致为()A. B.C. D.5.,则与位置关系是()A.平行 B.异面C.相交 D.平行或异面或相交6.设为虚数单位,复数,则实数的值是()A.1 B.-1 C.0 D.27.已知函数,若,则下列不等关系正确的是()A. B.C. D.8.已知函数,,若,对任意恒有,在区间上有且只有一个使,则的最大值为()A. B. C. D.9.下列图形中,不是三棱柱展开图的是()A. B. C. D.10.马林●梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p﹣1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P﹣1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是()A.3 B.4 C.5 D.611.已知,满足条件(为常数),若目标函数的最大值为9,则()A. B. C. D.12.由实数组成的等比数列{an}的前n项和为Sn,则“a1>0”是“S9>S8”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.设命题:,,则:__________.14.在二项式的展开式中,的系数为________.15.已知集合,则____________.16.已知点P是直线y=x+1上的动点,点Q是抛物线y=x2上的动点.设点M为线段PQ的中点,O为原点,则三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID—19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,…,10)建立模型和.(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:时间1月25日1月26日1月27日1月28日1月29日累计确诊人数的真实数据19752744451559747111(ⅰ)当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?(ⅱ)2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?附:对于一组数据(,,……,,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:其中,.5.53901938576403152515470010015022533850718.(12分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.方案一:每满100元减20元;方案二:满100元可抽奖一次.具体规则是从装有2个红球、2个白球的箱子随机取出3个球(逐个有放回地抽取),所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款7折8折9折原价(1)该商场某顾客购物金额超过100元,若该顾客选择方案二,求该顾客获得7折或8折优惠的概率;(2)若某顾客购物金额为180元,选择哪种方案更划算?19.(12分)已知函数.(1)若不等式有解,求实数的取值范围;(2)函数的最小值为,若正实数,,满足,证明:.20.(12分)已知函数,.(Ⅰ)判断函数在区间上零点的个数,并证明;(Ⅱ)函数在区间上的极值点从小到大分别为,,证明:21.(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点,是上异于,的点,.(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.22.(10分)已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,求函数在上最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
对函数求导,可得,即可求出,进而可求出答案.【详解】因为,所以,则,解得,则.故选:A.【点睛】本题考查了函数的导数与极值,考查了学生的运算求解能力,属于基础题.2、A【解析】分析:设,则,把用表示,然后令,由导数求得的最小值.详解:设,则,,,∴,令,则,,∴是上的增函数,又,∴当时,,当时,,即在上单调递减,在上单调递增,是极小值也是最小值,,∴的最小值是.故选A.点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错.3、A【解析】
化简为,求出它的图象向左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.【点睛】本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。4、D【解析】
根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.5、D【解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.选D.6、A【解析】
根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.7、B【解析】
利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.【详解】∵在R上单调递增,且,∴.∵的符号无法判断,故与,与的大小不确定,对A,当时,,故A错误;对C,当时,,故C错误;对D,当时,,故D错误;对B,对,则,故B正确.故选:B.【点睛】本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.8、C【解析】
根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【详解】由题意知,则其中,.又在上有且只有一个最大值,所以,得,即,所以,又,因此.①当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;②当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;③当时,,此时取可使成立,当时,,所以当时,成立;综上所得的最大值为.故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.9、C【解析】
根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.10、C【解析】
模拟程序的运行即可求出答案.【详解】解:模拟程序的运行,可得:p=1,S=1,输出S的值为1,满足条件p≤7,执行循环体,p=3,S=7,输出S的值为7,满足条件p≤7,执行循环体,p=5,S=31,输出S的值为31,满足条件p≤7,执行循环体,p=7,S=127,输出S的值为127,满足条件p≤7,执行循环体,p=9,S=511,输出S的值为511,此时,不满足条件p≤7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C.【点睛】本题主要考查程序框图,属于基础题.11、B【解析】
由目标函数的最大值为9,我们可以画出满足条件件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值.【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:.故选:.【点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值.12、C【解析】
根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若{an}是等比数列,则,
若,则,即成立,
若成立,则,即,
故“”是“”的充要条件,
故选:C.【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、,【解析】
存在符号改任意符号,结论变相反.【详解】命题是特称命题,则为全称命题,故将“”改为“”,将“”改为“”,故:,.故答案为:,.【点睛】本题考查全(特)称命题.对全(特)称命题进行否定的方法:(1)改写量词:全称量词改写为存在量词,存在量词改写为全称量词;(2)否定结论:对于一般命题的否定只需直接否定结论即可.14、60【解析】
直接利用二项式定理计算得到答案.【详解】二项式的展开式通项为:,取,则的系数为.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.15、【解析】
根据并集的定义计算即可.【详解】由集合的并集,知.故答案为:【点睛】本题考查集合的并集运算,属于容易题.16、3【解析】
过点Q作直线平行于y=x+1,则M在两条平行线的中间直线上,当直线相切时距离最小,计算得到答案.【详解】如图所示:过点Q作直线平行于y=x+1,则M在两条平行线的中间直线上,y=x2,则y'=2x=1,x=1点M为线段PQ的中点,故M在直线y=x+38时距离最小,故故答案为:32【点睛】本题考查了抛物线中距离的最值问题,转化为切线问题是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)适宜(2)(3)(ⅰ)回归方程可靠(ⅱ)防护措施有效【解析】
(1)根据散点图即可判断出结果.(2)设,则,求出,再由回归方程过样本中心点求出,即可求出回归方程.(3)(ⅰ)利用表中数据,计算出误差即可判断回归方程可靠;(ⅱ)当时,,与真实值作比较即可判断有效.【详解】(1)根据散点图可知:适宜作为累计确诊人数与时间变量的回归方程类型;(2)设,则,,,;(3)(ⅰ)时,,,当时,,,当时,,,所以(2)的回归方程可靠:(ⅱ)当时,,10150远大于7111,所以防护措施有效.【点睛】本题考查了函数模型的应用,在求非线性回归方程时,现将非线性的化为线性的,考查了误差的计算以及用函数模型分析数据,属于基础题.18、(1)(2)选择方案二更为划算【解析】
(1)计算顾客获得7折优惠的概率,获得8折优惠的概率,相加得到答案.(2)选择方案二,记付款金额为元,则可取的值为126,144,162,180.,计算概率得到数学期望,比较大小得到答案.【详解】(1)该顾客获得7折优惠的概率,该顾客获得8折优惠的概率,故该顾客获得7折或8折优惠的概率.(2)若选择方案一,则付款金额为.若选择方案二,记付款金额为元,则可取的值为126,144,162,180.,,则.因为,所以选择方案二更为划算.【点睛】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.19、(1)(2)见解析【解析】
(1)分离得到,求的最小值即可求得的取值范围;(2)先求出,得到,利用乘变化即可证明不等式.【详解】解:(1)设,∴在上单调递减,在上单调递增.故.∵有解,∴.即的取值范围为.(2),当且仅当时等号成立.∴,即.∵.当且仅当,,时等号成立.∴,即成立.【点睛】此题考查不等式的证明,注意定值乘变化的灵活应用,属于较易题目.20、(Ⅰ)函数在区间上有两个零点.见解析(Ⅱ)见解析【解析】
(Ⅰ)根据题意,,利用导函数研究函数的单调性,分类讨论在区间的单调区间和极值,进而研究零点个数问题;(Ⅱ)求导,,由于在区间上的极值点从小到大分别为,,求出,利用导数结合单调性和极值点,即可证明出.【详解】解:(Ⅰ),,当时,,,在区间上单调递减,,在区间上无零点;当时,,在区间上单调递增,,在区间上唯一零点;当时,,,在区间上单调递减,,;在区间上唯一零点;综上可知,函数在区间上有两个零点.(Ⅱ),,由(Ⅰ)知在无极值点;在有极小值点,即为;在有极大值点,即为,由,即,,2…,,,,,,以及的单调性,,,,,由函数在单调递增,得,,由在单调递减,得,即,故.【点睛】本题考查利用导数研究函数的单调性和极值,通过导数解决函数零点个数问题和证明不等式,考查转化思想和计算能力.21、(1)详见解析;(2).【解析】
(1)由直径所对的圆周角为,可知,通过计算,利用勾股定理的逆定理可以判断出为直角三角形,所以有.由已知可以证明出,这样利用线面垂直的判定定理可以证明平面,利用面面垂直的判定定理可以证明出平面平面;(2)以为坐标原点,分别以垂直于平面向上的方向、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,求出相应点的坐标,求出平面的一个法向量和平面的法向量,利用空间向量数量积运算公式,可以求出二面角的余弦值.【详解】解:(1)证明:因为半圆弧上的一点,所以.在中,分别为的中点,所以,且.于是在中,,所以为直角三角形,且.因为,,所以.因为,,,所以平面.又平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村生活污水治理经济效益分析
- 果品综合检测投资预算
- 促进夜经济持续健康发展实施方案
- 参加课后服务心得体会(23篇)
- 血检专项练习练习测试卷
- 2017年宁夏中考数学试卷(学生版)
- 高考数学复习解答题提高第一轮专题复习专题02直线与平面所成角(线面角)(含探索性问题)(典型题型归类训练)(学生版+解析)
- 语文统编版(2024)一年级上册小书包 课件
- 第1章 结构与性能概论课件
- 高中语文必修《五代史伶官传序》(同步教学课件)
- 阴极保护施工方案
- 2024年大连英歌石科技产业发展有限公司招聘笔试参考题库附带答案详解
- 锅炉安装质量手册
- 腹股沟疝课件腹
- 刍议农村雷电灾害的现状及防雷措施
- 猪肉配送服务方案
- 化验室环保培训课件
- 2023-2024学年浙江省杭州市九年级上册12月月考语文试卷(附答案)
- 基于STM32的智能避障循迹小车系统设计答辩模板
- 充电桩建设项目质量管理方案
- 中医养生秋季养生
评论
0/150
提交评论