版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈市黄冈中学2025届数学高一上期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与直线垂直,则()A.1 B.2C. D.2.已知三个变量随变量变化数据如下表:则反映随变化情况拟合较好的一组函数模型是A. B.C. D.3.若曲线与直线始终有交点,则的取值范围是A. B.C. D.4.设函数的值域为R,则实数a的取值范围是()A.(-∞,1] B.[1,+∞)C.(-∞,5] D.[5,+∞)5.若函数在上单调递增,则实数a的取值范围是()A. B.C. D.6.方程的解所在的区间是A B.C. D.7.下列说法正确的是()A.若,则B.若,则C.若,则D.若,则8.集合,集合或,则集合()A. B.C. D.9.函数的值域为()A. B.C. D.10.在中,,,则的值为A. B.C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.若函数有4个零点,则实数a的取值范围为___________.12.若函数y=f(x)是函数y=2x的反函数,则f(2)=______.13.如图,在四棱锥中,平面平面,是边长为4的等边三角形,四边形是等腰梯形,,则四棱锥外接球的表面积是____________.14.设函数,若不存在,使得与同时成立,则实数a的取值范围是________.15.若在上是减函数,则a的最大值是___________.16.已知函数有两个零点,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的奇函数,且当时,(1)求实数的值;(2)求函数在上的解析式;(3)若对任意实数恒成立,求实数的取值范围18.已知函数的图象中相邻两条对称轴之间的距离为,且直线是其图象的一条对称轴(1)求,的值;(2)在图中画出函数在区间上的图象;(3)将函数的图象上各点的横坐标缩短为原来的(纵坐标不变),再把得到的图象向左平移个单位,得到的图象,求单调减区间.19.已知函数是上的奇函数.(1)求的值;(2)比较与0的大小,并说明理由.20.计算求值:(1)计算:;(2).21.已知圆外有一点,过点作直线(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分析直线方程可知,这两条直线垂直,斜率之积为-1.【详解】由题意可知,即故选:B.2、B【解析】根据幂函数、指数函数、对数函数增长速度的不同可得结果.【详解】从题表格可以看出,三个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,呈指数函数变化,变量的增长速度最慢,对数型函数变化,故选B【点睛】本题主要考查幂函数、指数函数、对数函数模型的应用,意在考查综合利用所学知识解决问题的能力,属于简单题.3、A【解析】本道题目先理解的意义,实则为一个半圆,然后利用图像,绘制出该直线与该圆有交点的大致位置,计算出b的范围,即可.【详解】要使得这两条曲线有交点,则使得直线介于1与2之间,已知1与圆相切,2过点(1,0),则b分别为,故,故选A.【点睛】本道题目考查了圆与直线的位置关系,做此类题可以结合图像,得出b的范围.4、B【解析】分段函数中,根据对数函数分支y=log2x的值域在(1,+∞),而函数的值域为R,可知二次函数y=-x2+a的最大值大于等于1,即可求得a的范围【详解】x>2时,y=log2x>1∴要使函数的值域为R,则y=-x2+a在x≤2上的最大值a大于等于1即,a≥1故选:B【点睛】本题考查了对数函数的值域,由函数的值域及所得对数函数的值域,判断二次函数的的值域范围进而求参数范围5、A【解析】将写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出的取值范围.【详解】因为,所以,当在上单调递增时,,所以,当在上单调递增时,,所以,且,所以,故选:A.【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤:(1)先分析每一段函数的单调性并确定出参数的初步范围;(2)根据单调性确定出分段点处函数值的大小关系;(3)结合(1)(2)求解出参数的最终范围.6、C【解析】设,则由指数函数与一次函数的性质可知,函数与的上都是递增函数,所以在上单调递增,故函数最多有一个零点,而,,根据零点存在定理可知,有一个零点,且该零点处在区间内,故选答案C.考点:函数与方程.7、C【解析】运用作差法可以判断C,然后运用代特殊值法可以判断A、B、D,进而得到答案.【详解】对A,令,则.A错误;对B,令,则.B错误;对C,因为,而,则,所以,即.C正确;对D,令,则.D不正确.故选:C.8、C【解析】先求得,结合集合并集的运算,即可求解.【详解】由题意,集合或,可得,又由,所以.故选:C.9、C【解析】由二倍角公式化简,设,利用复合函数求值域.【详解】函数,设,,则,由二次函数的图像及性质可知,所以的值域为,故选:C.10、A【解析】如图,,又,∴,故.选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将函数转化为方程,作出的图像,结合图像分析即可.【详解】令得,作出的函数图像,如图,因为有4个零点,所以直线与的图像有4个交点,所以.故答案为:12、1【解析】根据反函数的定义即可求解.【详解】由题知y=f(x)=,∴f(2)=1.故答案为:1.13、##【解析】先根据面面垂直,取△的外接圆圆心G,梯形的外接圆圆心F,分别过两点作对应平面的垂线,找到交点为外接球球心,再通过边长关系计算半径,代入球的表面积公式即得结果.【详解】如图,取的中点,的中点,连,,在上取点,使得,由是边长为4的等边三角形,四边形是等腰梯形,,可得,,即梯形的外接圆圆心为F,分别过点、作平面、平面的垂线,两垂线相交于点,显然点为四棱锥外接球的球心,由题可得,,,则四棱锥外接球的半径,故四棱锥外接球的表面积为故答案为:.14、.【解析】当恒成立,不存在使得与同时成立,当时,恒成立,则需时,恒成立,只需时,,对的对称轴分类讨论,即可求解.【详解】若时,恒成立,不存使得与同时成立,则时,恒成立,即时,,对称轴为,当时,即,解得,当,即为抛物线顶点的纵坐标,,只需,.若恒成立,不存在使得与同时成立,综上,的取值范围是.故答案为:.【点睛】本题考查了二次函数和一次函数的图像和性质,不等式恒成立和能成立问题的解法,考查分类讨论和转化化归的思想方法,属于较难题.15、【解析】求出导函数,然后解不等式确定的范围后可得最大值【详解】由题意,,,,,,,∴,的最大值为故答案为:【点睛】本题考查用导数研究函数的单调性,考查两角和与差的正弦公式,考查正弦函数的性质,根据导数与单调性的关系列不等式求解即可.16、2【解析】根据函数零点的定义可得,进而有,整理计算即可得出结果.【详解】因为函数又两个零点,所以,即,得,即,所以.故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】(1)由题利用即可求解;(2)当x<0,则﹣x>0,根据函数为奇函数f(﹣x)=﹣f(x)及当x>0时,,可得函数在x<0时的解析式,进而得到函数在R上的解析式;(3)根据奇函数在对称区间上单调性相同,结合指数函数的图象和性质,可分析出函数的单调性,进而将原不等式变形,解不等式可得实数的取值范围.【详解】解:(1)函数是定义在上的奇函数,解得(2)由(1)当,又是奇函数,(3)由及函数是定义在上的奇函数得由的图像知为R上的增函数,,【点睛】本题考查的知识点是函数奇偶性与单调性的综合,其中熟练掌握函数奇偶性的性质,及在对称区间上单调性的关系是解答本题的关键.18、(1)..(2)见解析(3),【解析】(1)两条对称轴之间的距离是半个周期,求,当时,代入求(2)由(1)知,根据“五点法”画出函数的图象;(3)首先求图象变换后的解析式,再令,,求函数的单调递减区间.【详解】(1)∵相邻两条对称轴之间的距离为,∴的最小正周期,∴.∵直线是函数的图象的一条对称轴,∴.∴,∵,∴(2)由知0-1010故函数在区间上的图象如图(3)由的图象上各点的横坐标缩短为原来的(纵坐标不变),得到,图象向左平移个单位后得到,,令,,∴函数的单调减区间为,【点睛】本题考查三角函数性质和图象的综合问题,意在考查熟练掌握三角函数性质,一般“五点法”画的图象,若是函数图象变换,1.左右平移,需根据“左+右-”的变换规律求解,2.周期变换(伸缩变换),若是函数横坐标伸长(或缩短)到原来的倍,变换后的解析式为.19、(1);(2)【解析】(1)由奇函数的性质列式求解;(2)先判断函数的单调性,然后求解,利用单调性与奇偶性即可判断出.【小问1详解】因为是上的奇函数,所以,得时,,满足为奇函数,所以.【小问2详解】设,则,因,所以,所以,即,所以函数在上为增函数,又因为为上的奇函数,所以函数在上为增函数,因为,即,所以,因为是上的奇函数,所以,所以【点睛】判断复合函数的单调性时,一般利用换元法,分别判断内函数与外函数的单调性,再由同增异减的性质判断出复合函数的单调性.20、(1)102(2)【解析】根据指数幂运算律和对数运算律,计算即得解【小问1详解】【小问2详解】21、(1)或(2)【解析】(1)根据题意分斜率不存
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑制图课程设计作品
- 卫生间漏水维修协议书
- 化工基础课程设计 大纲
- 立式停车场课程设计
- 皮尔斯振荡器课程设计
- 数字称量勺市场环境与对策分析
- 空气监测课程设计稿
- 氢氧燃烧器项目评价分析报告
- 拆除平房施工方案
- 七年级语文老师在家长会上的发言稿
- 2022年云南现代烟草农业现状及发展策略
- 20m梁汽车吊吊装施工专项方案方案
- DB43∕T 742.1-2013 水稻育插秧机械化技术规范 第1部分:育秧
- 人教版高中语文选修-中国现代诗歌散文欣赏《雪落在中国的土地上》课件(共15张PPT)
- D-T型双轴卧式搅拌装置半釜持液量时功率特性的数值模拟
- 幼儿园保教实习与指导课件
- 登高作业错题解析
- 意外伤害保险业务监管办法(征求意见稿)政策解读培训试题
- 加油站罩棚拆除专项工程施工组织方案
- 350MW超临界锅炉讲义课件
- 幼儿绘本故事:没有靴子的猫店
评论
0/150
提交评论