版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省赣州市信丰县信丰中学数学高二上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,直线:,:,且,则的最小值为()A.2 B.4C.8 D.92.下列有关命题的表述中,正确的是()A.命题“若是偶数,则,都是偶数”的否命题是假命题B.命题“若为正无理数,则也是无理数”的逆命题是真命题C.命题“若,则”的逆否命题为“若,则”D.若命题“”,“”均为假命题,则,均为假命题3.如图,我市某地一拱桥垂直轴截面是抛物线,已知水利人员在某个时刻测得水面宽,则此时刻拱桥的最高点到水面的距离为()A. B.C. D.4.已知为等差数列,为公差,若成等比数列,且,则数列的前项和为()A. B.C. D.5.圆的圆心到直线的距离为2,则()A. B.C. D.26.在二面角的棱上有两个点、,线段、分别在这个二面角的两个面内,并且都垂直于棱,若,,,,则这个二面角的大小为()A. B.C. D.7.已知,那么函数在x=π处的瞬时变化率为()A. B.0C. D.8.下列双曲线中,渐近线方程为的是A. B.C. D.9.已知等差数列共有项,其中奇数项之和为290,偶数项之和为261,则的值为()A.30 B.29C.28 D.2710.已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=()A2 B.-2C. D.11.等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件12.已知平面向量,且,向量满足,则的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点在直线上,则的最小值为___________.14.已知双曲线与椭圆有公共的左、右焦点分别为,,以线段为直径的圆与双曲线C及其渐近线在第一象限内分别交于M,N两点,且线段的中点在另一条渐近线上,则的面积为___________.15.若斜率为的直线与椭圆交于,两点,且的中点坐标为,则___________.16.已知正数、满足,则的最大值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四边形是某半圆柱的轴截面(过上下底面圆心连线的截面),线段是该半圆柱的一条母线,点为线的中点(1)证明:;(2)若,且点到平面的距离为1,求线段的长18.(12分)如图,四边形是一块边长为4km正方形地域,地域内有一条河流,其经过的路线是以中点为顶点且开口向右的抛物线的一部分(河流宽度忽略不计),某公司准备投资一个大型矩形游乐场.(1)设,矩形游乐园的面积为,求与之间的函数关系;(2)试求游乐园面积的最大值.19.(12分)已知的二项展开式中所有项的二项式系数之和为,(1)求的值;(2)求展开式的所有有理项(指数为整数),并指明是第几项20.(12分)已知命题:;:.(1)若“”为真命题,求实数的取值范围;(2)若“”为真命题,求实数的取值范围.21.(12分)已知是公差不为零的等差数列,,且,,成等比数列(1)求数列的通项公式;(2)设,求数列的前项和22.(10分)已知函数(1)若在上不单调,求a的范围;(2)试讨论函数的零点个数
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由,可求得,再由,利用基本不等式求出最小值即可.【详解】因为,所以,即,因为,,所以,当且仅当,即时等号成立,所以的最小值为8.故选:C.【点睛】本题考查垂直直线的性质,考查利用基本不等式求最值,考查学生的计算求解能力,属于中档题.2、C【解析】对于选项A:根据偶数性质即可判断;对于选项B:通过举例即可判断,对于选项C:利用逆否命题的概念即可判断;对于选项D:根据且、或和非的关系即可判断.【详解】选项A:原命题的否命题为:若不是偶数,则,不都是偶数,若,都是偶数,则一定是偶数,从而原命题的否命题为真命题,故A错误;选项B:原命题的逆命题:若是无理数,则也为正无理数,当,即为无理数,但是有理数,故B错误;选项C:由逆否命题的概念可知,C正确;选项D:由为假命题可知,,至少有一个为假命题,由为假命题可知,和均为假命题,故为假命题,为真命题,故D错误.故选:C.3、D【解析】代入计算即可.【详解】设B点的坐标为,由抛物线方程得,则此时刻拱桥的最高点到水面的距离为2米.故选:D4、C【解析】先利用已知条件得到,解出公差,得到通项公式,再代入数列,利用裂项相消法求和即可.【详解】因为成等比数列,,故,即,故,解得或(舍去),故,即,故的前项和为:.故选:C.【点睛】方法点睛:数列求和的方法:(1)倒序相加法:如果一个数列的前项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些像可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列:或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.5、B【解析】配方求出圆心坐标,再由点到直线距离公式计算【详解】圆的标准方程是,圆心为,∴,解得故选:B.【点睛】本题考查圆的标准方程,考查点到直线距离公式,属于基础题6、C【解析】设这个二面角的度数为,由题意得,从而得到,由此能求出结果.【详解】设这个二面角的度数为,由题意得,,,解得,∴,∴这个二面角的度数为,故选:C.【点睛】本题考查利用向量的几何运算以及数量积研究面面角.7、A【解析】利用导数运算法则求出,根据导数的定义即可得到结论【详解】由题设,,所以,函数在x=π处瞬时变化率为,故选:A8、A【解析】由双曲线的渐进线的公式可行选项A的渐进线方程为,故选A.考点:本题主要考查双曲线的渐近线公式.9、B【解析】由等差数列的求和公式与等差数列的性质求解即可【详解】奇数项共有项,其和为,∴偶数项共有n项,其和为,∴故选:B10、B【解析】直接利用直线垂直公式计算得到答案.【详解】因为l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故选:【点睛】本题考查了根据直线垂直计算参数,属于简单题.11、B【解析】当时,通过举反例说明甲不是乙的充分条件;当是递增数列时,必有成立即可说明成立,则甲是乙的必要条件,即可选出答案【详解】由题,当数列为时,满足,但是不是递增数列,所以甲不是乙的充分条件若是递增数列,则必有成立,若不成立,则会出现一正一负的情况,是矛盾的,则成立,所以甲是乙的必要条件故选:B【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程12、B【解析】由题设可得,又,易知,,将问题转化为平面点线距离关系:向量的终点为圆心,1为半径的圆上的点到向量所在射线的距离最短,即可求的最小值.【详解】解:∵,而,∴,又,即,又,,∴,若,则,∴在以为圆心,1为半径的圆上,若,则,∴问题转化为求在圆上的哪一点时,使最小,又,∴当且仅当三点共线且时,最小为.故选:B.【点睛】关键点点睛:由已知确定,,构成等边三角形,即可将问题转化为圆上动点到射线的距离最短问题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由已知可用表示,代入所求式子后,结合二次函数的性质可求【详解】解:由题意得,即,所以,根据二次函数的性质可知,当时,上式取得最小值4,故的最小值2故答案为:214、【解析】求出椭圆焦点坐标,即双曲线焦点坐标,即双曲线的半焦距,再求出点坐标,利用中点在渐近线上得出的关系式,从而求得,然后可计算面积【详解】由题意椭圆中,即,以线段为直径的圆的方程为,由,解得(取第一象限交点坐标),,双曲线的不在第一象限的渐近线方程为,,的中点坐标为,它在渐近线上,所以,化简得,又,所以,双曲线方程为,则得,所以故答案为:15、-1【解析】根据给定条件设出点A,B的坐标,再借助“点差法”即可计算得解.【详解】依题意,线段的中点在椭圆C内,设,,由两式相减得:,而,于是得,即,所以.故答案为:16、【解析】直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为【点睛】本题考查了均值不等式,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)先证明,,利用判定定理证明平面,从而得到;(2)设,利用等体积法,由由,解出a.【详解】(1)证明:由题意可知平面,平面∴∵所对为半圆直径∴∴和是平面内两条相交直线∴平面平面∴(2)设,因为,且所以,设,在等腰直角三角形中,取BC的中点E,连结AE,则,取BC1的中点为P,连结DP,∵,∴,又为的中点,∴,∴,即的高为∴,∵,且∴平面,∵平面,且即到平面的距离为1,而由,即解得:,即.【点睛】立体几何解答题(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离).如果求体积,常用的方法有:(1)直接法;(2)等体积法;(3)补形法;(4)向量法.18、(1)(2)【解析】(1)首先建立直角坐标系,求出抛物线的方程,利用,求出点的坐标,表示出的面积为即可;(2)利用导数求函数的最值即可.【小问1详解】以为原点,所在直线为轴,垂直于的直线为轴建立直角坐标系,则,设抛物线的方程为,将点代入方程可得,解得,则抛物线方程为,由已知得,则点的纵坐标为,点的横坐标为,则,【小问2详解】,令,解得,当时,,所以函数在上单调递增,当时,,所以函数在上单调递减,因此函数时,有最大值,19、(1)(2)【解析】(1)由二项式系数和公式可得答案;(2)求出的通项,利用的指数为整数可得答案.【小问1详解】的二项展开式中所有项的二项式系数之和,所以.【小问2详解】,因此时,有理项,有理项是第一项和第七项.20、(1);(2).【解析】(1)先分别求出命题为真命题时的取值范围,再由已知“”为真命题进行分类讨论即可求解;(2)由(1)可知,当同时为真时,即可求出的范围.试题解析:若为真,则,所以,则若为真,则,即.(1)若“”为真,则或,则.(2)若“”为真,则且,则.21、(1);(2)【解析】(1)由等差数列以及等比中项的公式代入联立求解出,再利用等差数列的通项公式即可求得答案;(2)利用分组求和法,根据求和公式分别求出等差数列与等比数列的前项和再相加即可.【详解】(1)由题意,,,即,联立解得,所以数列的通项公式为;(2)由(1)得,,所以【点睛】关于数列前项和的求和方法:分组求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 5.2土壤-测定土壤质地课件高中地理人教版(2019)必修一
- 《数学广角-搭配》(教案)-二年级上册数学人教版
- 【同步备课】第1课时 认识公顷(教案)四年级数学上册(人教版)
- 小班健康教案及教学反思《能干的小手》
- 2024-2025学年苏科版八年级物理下册第六章 二、静电现象 教案
- 一年级上册数学教案 5以内的加法(1) 人教版
- 胫骨骨折手术步骤
- 《城市轨道交通装配式地下车站结构评价标准》征求意见稿文本
- 早教老师心态培训
- 小学教师专题培训
- 物业公司培训计划方案(2篇)
- 小学一年级上册语文练习题可打印
- 2024春期国开电大专科《液压与气压传动》在线形考(形考任务+实验报告)试题及答案
- 2024年辅警考试公基常识300题(附解析)
- 人用生物制品生物安全管理体系指南(征求意见稿)
- 《浙江省建筑信息模型(BIM)技术应用导则》
- 围挡施工技术方案
- 突尼斯沙漠国度
- 一标三实培训课件
- 德国民法典与法国民法典的区别课件
- JJF 2095-2024压力数据采集仪校准规范
评论
0/150
提交评论