版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市十一所学校2025届高二上数学期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题P:,,则命题P的否定为()A., B.,C., D.,2.过点A(3,3)且垂直于直线的直线方程为A. B.C. D.3.学校开设甲类选修课3门,乙类选修课4门,从中任选3门,甲乙两类课程都有选择的不同选法种数为()A.24 B.30C.60 D.1204.已知点P是圆上一点,则点P到直线的距离的最大值为()A.2 B.C. D.5.已知双曲线的离心率为,则该双曲线的渐近线方程为()A. B.C. D.6.下列椭圆中,焦点坐标是的是()A. B.C. D.7.已知命题p:“是方程表示椭圆”的充要条件;命题q:“是a,b,c成等比数列”的必要不充分条件,则下列命题为真命题的是()A. B.C. D.8.已知直线与圆相交于,两点,则的取值范围为()A. B.C. D.9.已知向量,,且,则实数等于()A1 B.2C. D.10.如图,在长方体中,,E,F分别为的中点,则异面直线与所成角的余弦值为()A. B.C. D.11.如图所示,用3种不同的颜色涂入图中的矩形A,B,C中,要求相邻的矩形不能使用同一种颜色,则不同的涂法有()ABCA.3种 B.6种C.12种 D.27种12.从装有2个红球和2个白球的口袋内任取两个球,则下列选项中的两个事件为互斥事件的是()A.至多有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;都是红球 D.至多有1个白球;至多有1个红球二、填空题:本题共4小题,每小题5分,共20分。13.函数仅有一个零点,则实数的取值范围是_________.14.若方程表示的曲线是圆,则实数的k取值范围是___________.15.棱长为的正方体的顶点到截面的距离等于__________.16.经过点作直线,直线与连接两点线段总有公共点,则直线的斜率的取值范围是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若在上单调递增,求的取值范围;(2)若在上存在极值点,证明:.18.(12分)在直角坐标系中,以坐标原点O为圆心的圆与直线相切.(1)求圆O的方程;(2)设圆O交x轴于A,B两点,点P在圆O内,且是、的等比中项,求的取值范围.19.(12分)在一个盒子中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,先从盒子中随机取出一个球,该球的编号记为,将球放回盒子中,然后再从盒子中随机取出一个球,该球的编号记为.(1)写出试验的样本空间;(2)求“”的概率.20.(12分)已知直线和的交点为(1)若直线经过点且与直线平行,求直线的方程;(2)若直线经过点且与两坐标轴围成的三角形的面积为,求直线的方程21.(12分)已知正项数列的首项为,且满足,(1)求证:数列为等比数列;(2)记,求数列的前n项和22.(10分)已知椭圆:,的左右焦点,是双曲线的左右顶点,的离心率为,的离心率为,点在上,过点E和,分别作直线交椭圆于,和,点,如图.(1)求,的方程;(2)求证:直线和的斜率之积为定值;(3)求证:为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据特称命题的否定变换形式即可得出结果【详解】命题:,,则命题的否定为,故选:B2、D【解析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为D.3、B【解析】利用组合数计算出正确答案.【详解】甲乙两类课程都有选择的不同选法种数为.故选:B4、C【解析】求出圆心到直线的距离,由这个距离加上半径即得【详解】由圆,可得圆心坐标,半径,则圆心C到直线的距离为,所以点P到直线l的距离的最大值为.故选:C5、C【解析】求得,由此求得双曲线的渐近线方程.【详解】离心率,则,所以渐近线方程.故选:C6、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B7、C【解析】先判断命题p,q的真假,从而判断的真假,再根据“或”“且”命题的真假判断方法,可得答案.【详解】当时,表示圆,故命题p:“是方程表示椭圆”的充要条件是假命题,命题q:“是a,b,c成等比数列”的必要不充分条件为真命题,则是真命题,是假命题,故是假命题,是假命题,是真命题,是假命题,故选:C8、C【解析】求得直线恒过的定点,找出弦长取得最值的状态,利用弦长公式求解即可.【详解】因直线方程为:,整理得,故该直线恒过定点,又,故点在圆内,又圆的圆心为则,此时直线过圆心;当直线与直线垂直时,取得最小值,此时.故的取值范围为.故选:.9、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C10、A【解析】利用平行线,将异面直线的夹角问题转化为共面直线的夹角问题,再解三角形.【详解】取BC中点H,BH中点I,连接AI、FI、,因为E为中点,在长方体中,,所以四边形是平行四边形,所以所以,又因为F为的中点,所以,所以,则即为异面直线与所成角(或其补角).设AB=BC=4,则,则,,根据勾股定理:,,,所以是等腰三角形,所以.故B,C,D错误.故选:A.11、C【解析】根据给定信息,按用色多少分成两类,再分类计算作答.【详解】计算不同的涂色方法数有两类办法:用3种颜色,每个矩形涂一种颜色,有种方法,用2色,矩形A,C涂同色,有种方法,由分类加法计数原理得(种),所以不同的涂法有12种.故选:C12、C【解析】根据试验过程进行分析,利用互斥事件的定义对四个选项一一判断即可.【详解】对于A:“至多有1个白球”包含都是红球和一红一白,“都是红球”包含都是红球,所以“至多有1个白球”与“都是红球”不是互斥事件.故A错误;对于B:“至少有1个白球”包含都是白球和一红一白,“至少有1个红球”包含都是红球和一红一白,所以“至少有1个白球”与“至少有1个红球”不是互斥事件.故B错误;对于C:“恰好有1个白球”包含一红一白,“都是红球”包含都是红球,所以“恰好有1个白球”与“都是红球”是互斥事件.故C错误;对于D:“至多有1个红球”包含都是白球和一红一白,“至多有1个白球”包含都是红球和一红一白,所以“至多有1个白球”与“至多有1个红球”不是互斥事件.故D错误.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意求出函数的导函数并且通过导数求出原函数的单调区间,进而得到原函数的极值,因为函数仅有一个零点,所以结合函数的性质可得函数的极大值小于或极小值大于,即可得到答案.【详解】解:由题意可得:函数,所以,令,则或,令,则,所以函数的单调增区间为和,减区间为所以当时函数有极大值,当时函数有极小值,,因为函数仅有一个零点,,所以或,解得或.所以实数的取值范围是故答案为:14、【解析】根据二元二次方程表示圆的条件求解【详解】由题意,故答案为:15、【解析】根据勾股定理可以计算出,这样得到是直角三角形,利用等体积法求出点到的距离.【详解】解:如图所示,在三棱锥中,是三棱锥的高,,在中,,,,所以是直角三角形,,设点到的距离为,.故A到平面的距离为故答案为:【点睛】本题考查了点到线的距离,利用等体积法求出点到面的距离.是解题的关键.16、【解析】求出的斜率,结合图形可得结论【详解】,,而,因此,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)由题得,在,上为单调递增的函数,在,上恒成立,分类讨论,再次利用导数研究函数的最值即可;(2)由(1)可知,在存在极值点,则且,求得,再两次求导即可得结论.【小问1详解】由题得,在,上为单调递增的函数,在,上恒成立,设,当时,由,得,在,上为增函数,则,在,上恒成立,满足命题,当时,由,得,在上为减函数,,时,,即,不满足恒成立,不成立,综上:的取值范围为.小问2详解】证明:由(1)可知,在存在极值点,则且即:要证只需证即证又由(1)可知在上为增函数,且,成立.要证只需证即证:设则即在上增函数在为增函数成立.综上,成立.18、(1);(2).【解析】(1)根据题意设出圆方程,结合该圆与直线相切,求得半径,则问题得解;(2)设出点的坐标为,根据题意,求得的等量关系,再构造关于的函数关系,求得函数值域即可.【小问1详解】根据题意,设的方程为,又该圆与直线相切,故可得,则圆的方程为.【小问2详解】对圆:,令,则,不妨设,则,设点,因为点在圆内,故;因为是、的等比中项,故可得:,则,整理得;由可得,解得,则.故答案为:.19、(1)见解析(2)【解析】(1)利用列举法列出试验的样本空间,(2)由(1)可知共有16种情况,其中和为5的有4种,然后利用古典概型的概率公式求解即可【小问1详解】由题意可知试验的样本空间为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)【小问2详解】由(1)可知共有16种等可能情况,其中满足的有:(1,4),(2,3),(3,2),(4,1),4种,所以“”的概率为20、(1)(2)或【解析】(1)由已知可得交点坐标,再根据直线间的位置关系可得直线方程;(2)设直线方程,根据直线与两坐标轴围成的三角形的面积,列出方程组,解方程.【小问1详解】解:联立的方程,解得,即设直线的方程为:,将带入可得所以的方程为:;【小问2详解】解:法①:易知直线在两坐标轴上的截距均不为,设直线方程为:,则直线与两坐标轴交点为,由题意得,解得:或所以直线的方程为:或,即:或.法②:设直线的斜率为,则的方程为,当时,当时,所以,解得:或所以m的方程为或即:或.21、(1)证明见解析(2)【解析】(1)由递推关系式化简及等比数列的的定义证明即可;(2)根据裂项相消法求解即可得解.【小问1详解】证明:由得,而且,则,即数列为首项,公比为的等比数列【小问2详解】由上可知,所以,22、(1):;:(2)证明见解析(3)证明见解析【解析】(1)利用待定系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校音乐教师工作总结范文范本
- 运动改造大脑课件
- 高中教师培训心得十篇
- 与家长交流心得体会
- 那个星期天资料课件
- 活动策划方案模板锦集10篇
- 销售员一月份工作总结
- 企业员工年终总结参考10篇
- 员工上班迟到检讨书三篇
- 万能检讨书(集合15篇)
- 大学生劳动素养的现状调查及影响因素分析
- 分体空调维修技术方案
- 慢性肾脏病临床诊疗指南
- 成人气管切开拔管中国专家共识解读
- 隧道工程施工环境保护措施
- 小学生保险知识讲座
- 2024年中国龙江森林工业集团招聘笔试参考题库含答案解析
- 2023-2024学年秋季小学三年级上册语文部编版课后作业第22课《读不完的大书》(含答案)
- 投资项目居间协议书
- 高中学学生社团章程
- 口腔门诊验收管理制度
评论
0/150
提交评论