河北省教考联盟2025届高二上数学期末质量检测试题含解析_第1页
河北省教考联盟2025届高二上数学期末质量检测试题含解析_第2页
河北省教考联盟2025届高二上数学期末质量检测试题含解析_第3页
河北省教考联盟2025届高二上数学期末质量检测试题含解析_第4页
河北省教考联盟2025届高二上数学期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省教考联盟2025届高二上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆的半径为,平面上一定点到圆心的距离,是圆上任意一点.线段的垂直平分线和直线相交于点,设点在圆上运动时,点的轨迹为,当时,轨迹对应曲线的离心率取值范围为()A. B.C. D.2.一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是()A.5800 B.6000C.6200 D.64003.已知双曲线的离心率为,则该双曲线的渐近线方程为()A. B.C. D.4.已知数列满足,且,,则()A. B.C. D.5.与空间向量共线的一个向量的坐标是()A. B.C. D.6.已知实数满足,则的取值范围()A.-1m B.-1m<0或0<mC.m或m-1 D.m1或m-17.有7名同学参加百米竞赛,预赛成绩各不相同,取前3名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道7名同学成绩的()A.平均数 B.众数C.中位数 D.方差8.在递增等比数列中,为其前n项和.已知,,且,则数列的公比为()A.3 B.4C.5 D.69.已知点,,若直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.10.已知向量,则()A. B.C. D.11.已知圆柱的底面半径是1,高是2,那么该圆柱的侧面积是()A.2 B.C. D.12.将上各点的纵坐标不变,横坐标变为原来的2倍,得到曲线C,若直线l与曲线C交于A,B两点,且AB中点坐标为M(1,),那么直线l的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.与圆外切于原点,且被y轴截得的弦长为8的圆的标准方程为__________14.已知直线和互相平行,则实数的值为___________.15.直线与直线垂直,则______16.若球的大圆的面积为,则该球的表面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C的顶点在坐标原点,焦点在x轴上,点在抛物线C上(1)求抛物线C的方程;(2)过抛物线C焦点F的直线l交抛物线于P,Q两点,若求直线l的方程18.(12分)已知椭圆与抛物线有一个相同的焦点,且该椭圆的离心率为,(Ⅰ)求该椭圆的标准方程:(Ⅱ)求过点的直线与该椭圆交于A,B两点,O为坐标原点,若,求的面积.19.(12分)已知点A(0,-2),椭圆E:(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.20.(12分)已知数列满足,,,.从①,②这两个条件中任选一个填在横线上,并完成下面问题.(1)写出、,并求数列的通项公式;(2)求数列的前项和.21.(12分)已知数列是正项数列,,且.(1)求数列的通项公式;(2)设,数列的前项和为,若对恒成立,求实数的取值范围.22.(10分)在平面直角坐标系中,已知圆,点P在圆上,过点P作x轴的垂线,垂足为是的中点,当P在圆M上运动时N形成的轨迹为C(1)求C的轨迹方程;(2)若点,试问在x轴上是否存在点M,使得过点M的动直线交C于两点时,恒有?若存在,求出点M的坐标;若不存在,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分点A在圆内,圆外两种情况,根据中垂线的性质,结合椭圆、双曲线的定义可判断轨迹,再由离心率计算即可求解.【详解】当A在圆内时,如图,,所以的轨迹是以O,A为焦点的椭圆,其中,,此时,,.当A在圆外时,如图,因为,所以轨迹是以O,A为焦点的双曲线,其中,,此时,,.综上可知,.故选:D2、D【解析】解:∵一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,∴当另外两名员工的工资都小于5300时,中位数为(5300+5500)÷2=5400,当另外两名员工的工资都大于5300时,中位数为(6100+6500)÷2=6300,∴8位员工月工资的中位数的取值区间为[5400,6300],∴8位员工月工资的中位数不可能是6400.本题选择D选项.3、C【解析】求得,由此求得双曲线的渐近线方程.【详解】离心率,则,所以渐近线方程.故选:C4、A【解析】由已知两个不等式,利用“两边夹”思想求得,然后利用累加法可求得【详解】∵,∴,∴,又,∴,即,∴故选:A【点睛】本题考查数列的递推式,由递推式的特征,采用累加法求得数列的项.解题关键是利用“两边夹”思想求解5、C【解析】根据空间向量共线的坐标表示即可得出结果.【详解】.故选:C.6、C【解析】把看成动点与所确定的直线的斜率,动点在所给曲线上.【详解】就是点,所确定的直线的斜率,而在上,因为,.故选:C7、C【解析】根据中位数的性质,结合题设按成绩排序7选3,即可知还需明确的成绩数据信息.【详解】由题设,7名同学参加百米竞赛,要取前3名参加决赛,则成绩从高到低排列,确定7名同学成绩的中位数,即第3名的成绩便可判断自己是否能进入决赛.故选:C.8、B【解析】由已知结合等比数列的性质可求出、,然后结合等比数列的求和公式求解即可.【详解】解:由题意得:是递增等比数列又,,故故选:B9、B【解析】直接利用两点间的坐标公式和直线的斜率的关系求出结果【详解】解:直线过点且斜率为,与连接两点,的线段有公共点,由图,可知,,当时,直线与线段有交点故选:B10、B【解析】根据向量加减法运算的坐标表示即可得到结果【详解】故选:B.11、D【解析】由圆柱的侧面积公式直接可得.【详解】故选:D12、A【解析】先根据题意求出曲线C的方程,然后利用点差法求出直线l的斜率,从而可求出直线方程【详解】设点为曲线C上任一点,其在上对应在的点为,则,得,所以,所以曲线C的方程为,设,则,两方程相减整理得,因为AB中点坐标为M(1,),所以,即,所以,所以,所以直线l的方程为,即,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、;【解析】设所求圆的圆心为,根据两圆外切于原点可知两圆心与原点共线,再根据弦长列出方程组求出即可.【详解】设所求圆的圆心为,因为圆的圆心为,与原点连线的斜率为,又所求圆与已知圆外切于原点,,①所以所求圆的半径满足,又被y轴截得的弦长为8,②由①②解得,所以圆的方程为.故答案为:14、【解析】根据直线平行的充要条件即可求出实数的值.详解】由直线和互相平行,得,即.故答案为:.15、##【解析】根据两直线垂直得,即可求出答案.【详解】由直线与直线垂直得,.故答案为:.16、【解析】设球的半径为,则球的大圆的半径为,根据圆的面积公式列方程求出,再由球的表面积公式即可求解.【详解】设球的半径为,则球的大圆的半径为,所以球的大圆的面积为,可得,所以该球的表面积为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)把点的坐标代入方程即可;(2)设直线方程,解联立方程组,消未知数,得到一元二次方程,再利用韦达定理和已知条件求斜率.【小问1详解】因为抛物线C的顶点在原点,焦点在x轴上,所以设抛物线方程为又因为点在抛物线C上,所以,解得,所以抛物线的方程为;【小问2详解】抛物线C的焦点为,当直线l的斜率不存在时,,不符合题意;当直线l的斜率存在时,设直线l的方程为,设直线l交抛物线的两点坐标为,,由得,,,,由抛物线得定义可知,所以,解得,即,所以直线l的方程为或18、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据题意可以求出椭圆的焦点,再根据椭圆的离心率公式,求出的值,然后结合椭圆的关系求出,最后写出椭圆的标准方程;(Ⅱ)根据平面向量共线定理可以得出A,B两点横坐标和纵坐标之间的关系,再设出直线AB方程与椭圆方程联立,利用根与系数关系求出直线AB的斜率,最后根据三角形面积结合根与系数关系求出的面积.【详解】(Ⅰ)由题意,设椭圆的标准方程为,由题意可得,又,,所以椭圆的标准方程为(Ⅱ)设,,由得:,验证易知直线AB的斜率存在,设直线AB的方程为联立椭圆方程,得:,整理得:,得:,将代入得,所以的面积.【点睛】本题考查了求椭圆的标准方程,考查了利用一元二次方程根与系数关系求直线斜率和三角形面积问题,考查了数学运算能力.19、(1)(2)【解析】设出,由直线的斜率为求得,结合离心率求得,再由隐含条件求得,即可求椭圆方程;(2)点轴时,不合题意;当直线斜率存在时,设直线,联立直线方程和椭圆方程,由判别式大于零求得的范围,再由弦长公式求得,由点到直线的距离公式求得到的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出值,则直线方程可求.试题解析:(1)设,因为直线的斜率为,所以,.又解得,所以椭圆的方程为.(2)解:设由题意可设直线的方程为:,联立消去得,当,所以,即或时.所以点到直线的距离所以,设,则,,当且仅当,即,解得时取等号,满足所以的面积最大时直线的方程为:或.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.20、(1)条件选择见解析,,,(2)【解析】(1)选①,推导出数列为等比数列,确定该数列的首项和公比,可求得,并可求得、;选②,推导出数列是等比数列,确定该数列的首项和公比,可求得,可求得,由此可得出、;(2)求得,,分为偶数、奇数两种情况讨论,结合并项求和法以及等比数列求和公式可求得.【小问1详解】解:若选①,,且,故数列是首项为,公比为的等比数列,,故;若选②,,所以,,且,故数列是以为首项,以为公比的等比数列,所以,,故,所以,,故,.【小问2详解】解:由(1)可知,则,所以,.当为偶数时,;当为奇数时,.综上所述,.21、(1)(2)【解析】(1)由条件因式分解可得,从而得到,即可得出答案.(2)由(1)可得,由错位相减法求和得到,由题意即即对恒成立,分析数列的单调性,得出答案.【小问1详解】由,得∵∴∴∴数列是公比为2的等比数列.∵,∴.【小问2详解】由(1)知,∴∴①∴②①-②得∴∴由对恒成立得对恒成立即对恒成立,又是递减数列∴时得到最大值∴,即∴的取值范围是.22、(1);(2)不存在,理由见解析.【解析】(1)设,根据中点坐标公式用N的坐标表示P的坐标,将P的坐标代入圆M的方程化简即可得N的轨迹方程;(2)假设存在,设M为(m,0),设直线l斜率为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论