2025届江苏省六校联盟高一上数学期末质量检测试题含解析_第1页
2025届江苏省六校联盟高一上数学期末质量检测试题含解析_第2页
2025届江苏省六校联盟高一上数学期末质量检测试题含解析_第3页
2025届江苏省六校联盟高一上数学期末质量检测试题含解析_第4页
2025届江苏省六校联盟高一上数学期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省六校联盟高一上数学期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm,如果不计容器的厚度,则球的体积为A.B.C.D.2.计算:()A.0 B.1C.2 D.33.下列四组函数中,表示同一函数的一组是()A., B.,C., D.,4.已知函数为奇函数,,若对任意、,恒成立,则的取值范围为()A. B.C. D.5.下列函数中既是奇函数,又是减函数的是()A. B.C D.6.若,则下列不等式成立的是().A. B.C. D.7.下列函数在其定义域上既是奇函数又是减函数的是()A. B.C. D.8.我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y(单位:万元)与处理量x(单位:吨)之间的函数关系可近似表示为,当处理量x等于多少吨时,每吨的平均处理成本最少()A.120 B.200C.240 D.4009.已知,,,则,,的大小关系是()A. B.C. D.10.若,则的最小值为()A.4 B.3C.2 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在R上的偶函数,且在上为增函数,,则不等式的解集为___________.12.不等式的解集为__________.13.计算:__________14.某房屋开发公司用14400万元购得一块土地,该地可以建造每层的楼房,楼房的总建筑面积(即各层面积之和)每平方米平均建筑费用与建筑高度有关,楼房每升高一层整幢楼房每平方米建筑费用提高640元.已知建筑5层楼房时,每平方米建筑费用为8000元,公司打算造一幢高于5层的楼房,为了使该楼房每平米的平均综合费用最低(综合费用是建筑费用与购地费用之和),公司应把楼层建成____________层,此时,该楼房每平方米的平均综合费用最低为____________元15.某公司在甲、乙两地销售同一种农产品,利润(单位:万元)分别为,,其中x为销售量(单位:吨),若该公司在这两地共销售10吨农产品,则能获得的最大利润为______万元.16.利用随机数表法对一个容量为90,编号为00,01,02,…,89的产品进行抽样检验,抽取一个容量为10的样本,若选定从第2行第3列的数开始向右读数(下面摘取了随机数表中的第1行至第5行),根据下图,读出的第3个数是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,有一块半径为4的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上,连接OC两点,OC与OB所形成的夹角为.(1)写出这个梯形周长y和的函数解析式,并写出它的定义域;(2)求周长y的最大值以及此时梯形的面积.18.在充分竞争的市场环境中,产品的定价至关重要,它将影响产品的销量,进而影响生产成本、品牌形象等某公司根据多年的市场经验,总结得到了其生产的产品A在一个销售季度的销量单位:万件与售价单位:元之间满足函数关系,A的单件成本单位:元与销量y之间满足函数关系当产品A的售价在什么范围内时,能使得其销量不低于5万件?当产品A的售价为多少时,总利润最大?注:总利润销量售价单件成本19.已知集合,(1)当时,求;(2)若,求a的取值范围;20.已知函数(是常数)是奇函数,且满足.(1)求的值;(2)试判断函数在区间上的单调性并用定义证明.21.6月17日是联合国确定的“世界防治荒漠化和干旱日”,旨在进一步提高世界各国人民对防治荒漠化重要性的认识,唤起人们防治荒漠化的责任心和紧迫感.为增强全社会对防治荒漠化的认识与关注,聚集联合国2030可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗圃中随机地抽测了400株树苗的高度(单位:),得到如图所示的频率分布直方图.(1)求频率分布直方图中实数的值和抽到的树苗的高度在的株数;(2)估计苗圃中树苗的高度的平均数和中位数.(同一组中数据用该组区间的中点值作代表)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设球的半径为R,根据已知条件得出正方体上底面截球所得截面圆的半径为2cm,球心到截面圆圆心的距离为,再利用球的性质,求得球的半径,最后利用球体体积公式,即可得出答案【详解】设球的半径为R,设正方体上底面截球所得截面圆恰好为上底面正方形的内切圆,该圆的半径为,且该截面圆圆心到水面的距离为1cm,即球心到截面圆圆心的距离为,由勾股定理可得,解得,因此,球的体积为故选A【点睛】本题主要考查了球体的体积的计算问题,解决本题的关键在于利用几何体的结构特征和球的性质,求出球体的半径,着重考查了空间想象能力,以及推理与计算能力,属于基础题2、B【解析】根据指数对数恒等式及对数的运算法则计算可得;【详解】解:;故选:B3、C【解析】分析每个选项中两个函数的定义域,并化简函数解析式,利用函数相等的概念可得出合适的选项.【详解】对于A选项,函数的定义域为,函数的定义域为,A选项中的两个函数不相等;对于B选项,函数的定义域为,函数的定义域为,B选项中的两个函数不相等;对于C选项,函数、的定义域均为,且,C选项中的两个函数相等;对于D选项,对于函数,有,解得,所以,函数的定义域为,函数的定义域为,D选项中的两个函数不相等.故选:C.4、A【解析】由奇函数性质求得,求得函数的解析式,不等式等价于,由此求得答案.【详解】解:因为函数的定义域为,又为奇函数,∴,解得,∴,所以,要使对任意、,恒成立,只需,又,∴,即,故选:A.5、A【解析】根据对数、指数、一次函数的单调性判断BCD,根据定义判断的奇偶性.【详解】因为在定义域内都是增函数,所以BCD错误;因为,所以函数为奇函数,且在上单调递减,A正确.故选:A6、B【解析】∵a>b>c,∴a﹣c>b﹣c>0,∴故选B7、D【解析】对于A:由定义法判断出不是奇函数,即可判断;对于B:判断出在R上为增函数,即可判断;对于C:不能说在定义域是减函数,即可判断;对于D:用图像法判断.【详解】对于A:的定义域为R..所以不是奇函数,故A错误;对于B:在R上为增函数.故B错误;对于C:在为减函数,在为减函数,但不能说在定义域是减函数.故C错误;对于D:,作出图像如图所示:所以既是奇函数又是减函数.故D正确.故选:D8、D【解析】先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分和分析讨论求出其最小值即可【详解】由题意得二氧化碳每吨的平均处理成本为,当时,,当时,取得最小值240,当时,,当且仅当,即时取等号,此时取得最小值200,综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元,故选:D9、B【解析】分别求出的范围,然后再比较的大小.【详解】,,,,,,并且,,综上可知故选:B【点睛】本题考查指对数和三角函数比较大小,意在考查转化与化归的思想和基础知识,属于基础题型.10、D【解析】利用“乘1法”即得.【详解】因为,所以,∴,当且仅当时,即时取等号,所以的最小值为1.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意求出函数的单调区间及所过的定点,进而解出不等式.【详解】因为是定义在R上的偶函数,且在上为增函数,,所以函数在上为减函数,.所以且在上为增函数,,在上为减函数,.所以的解集为:.故答案为:.12、【解析】由不等式,即,所以不等式的解集为.13、【解析】.故答案为.点睛:(1)任何非零实数的零次幂等于1;(2)当,则;(3).14、①.15②.24000【解析】设公司应该把楼建成层,可知每平方米的购地费用,已知建筑5层楼房时,每平方米建筑费用为8000元,从中可得出建层的每平方米的建筑费用,然后列出式子求得其最小值,从而可求得答案【详解】设公司应该把楼建成层,则由题意得每平方米购地费用为(元),每平方米的建筑费用为(元),所以每平方米的平均综合费用为,当且仅当,即时取等号,所以公司应把楼层建成15层,此时,该楼房每平方米的平均综合费用最低为24000元,故答案为:15,2400015、34【解析】设公司在甲地销售农产品吨,则在乙地销售农产品吨,根据利润函数表示出利润之和,利用配方法求出函数的最值即可【详解】设公司在甲地销售农产品()吨,则在乙地销售农产品吨,,利润为,又且故当时,能获得的最大利润为34万元故答案为:34.16、75【解析】根据随机数表法进行抽样即可.【详解】从随机数表的第2行第3列的数开始向右读数,第一个编号为62,符合;第二个编号为38,符合;第三个编号为97,大于89,应舍去;下一个编号为75,符合.所以读出的第3个数是:75.故答案为:75.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)20,【解析】(1)过点C作,表示出,,即可写出梯形周长y和的函数解析式;(2)令,结合二次函数求出y的最大值,求出此时的,再计算梯形面积即可.【小问1详解】由题意得.半圆形钢板半径为4,则,过点C作.在和中,有,,.在中,因为,为等腰三角形,故,所以,.,.【小问2详解】由.令,则,则.则当时,周长y有最大值,最大值20,此时,.故梯形的高,,.18、(1)(2)14元【解析】(1)根据题中所给的解析式,分情况列出其满足的不等式组,求得结果;(2)根据题意,列出利润对应的解析式,分段求最值,最后比较求得结果.【详解】(1)由得,或解得,或.即.答:当产品A的售价时,其销量y不低于5万件(2)由题意,总利润①当时,,当且仅当时等号成立.②当时,单调递减,所以,时,利润最大.答:当产品A的售价为14元时,总利润最大【点睛】该题考查的是有关函数的应用问题,涉及到的知识点有根据题意列出函数解析式,根据函数解析式求函数的最值,注意认真分析题意,最后求得结果.19、(1),(2)【解析】(1)计算得到,,计算得到答案.(2)所以,讨论和两种情况计算得到答案.【详解】(1)因为,所以,因为,所以(2)因为,所以,当时,,即;当时,,即.综上所述:a的取值范围为.【点睛】本题考查了集合的运算,根据集合的包含关系求参数,忽略掉空集是容易发生的错误.20、(1),(2)在区间(0,0.5)上是单调递减的【解析】(Ⅰ)∵函数是奇函数,则即∴------------------------2分由得解得∴,.------------------------------------------------------6分(Ⅱ)解法1:由(Ⅰ)知,∴,----------------------------------------8分当时,----------------------------10分∴,即函数在区间上为减函数.------------12分[解法2:设,则==------------------------------10分∵∴,,∴,即∴函数在区间上为减函数.------

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论