2025届江苏省海安市数学高二上期末经典模拟试题含解析_第1页
2025届江苏省海安市数学高二上期末经典模拟试题含解析_第2页
2025届江苏省海安市数学高二上期末经典模拟试题含解析_第3页
2025届江苏省海安市数学高二上期末经典模拟试题含解析_第4页
2025届江苏省海安市数学高二上期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省海安市数学高二上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列满足,则q=()A.1 B.-1C.3 D.-32.下列命题正确的是()A经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面3.已知函数的图象过点,令.记数列的前n项和为,则()A. B.C. D.4.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是6”,丙表示事件“两次取出的球的数字之和是5”,丁表示事件“两次取出的球的数字之和是偶数”,则下列判断正确的是()A.甲与丙是互斥事件 B.乙与丙是对立事件C.甲与丁是对立事件 D.丙与丁是互斥事件5.过抛物线的焦点引斜率为1的直线,交抛物线于,两点,则()A.4 B.6C.8 D.106.正方体中,E、F分别是与的中点,则直线ED与所成角的余弦值是()A. B.C. D.7.若直线的倾斜角为120°,则直线的斜率为()A. B.C. D.8.已知直线经过抛物线的焦点,且与该抛物线交于,两点,若满足,则直线的方程为()A. B.C. D.9.已知双曲线的左右焦点分别为、,过作的一条渐近线的垂线,垂足为,若的面积为,则的渐近线方程为A. B.C. D.10.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B.C. D.11.在长方体,,则异面直线与所成角的余弦值是()A. B.C. D.12.已知双曲线的离心率为2,且与椭圆有相同的焦点,则该双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是______.14.已知函数,,当时,不等式恒成立,则实数a的取值范围为_______15.抛物线C:的焦点F,其准线过(-3,3),过焦点F倾斜角为的直线交抛物线于A,B两点,则p=___________;弦AB的长为___________.16.写出一个数列的通项公式____________,使它同时满足下列条件:①,②,其中是数列的前项和.(写出满足条件的一个答案即可)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数图像在点处的切线方程为.(1)求实数、的值;(2)求函数在上的最值.18.(12分)已知椭圆C与椭圆有相同的焦点,且离心率为.(1)椭圆C的标准方程;(2)若椭圆C的两个焦点,P是椭圆上的点,且,求的面积.19.(12分)在平面直角坐标系中,有一条长度为3的线段,端点,分别在轴、轴上运动,为线段上一点,且.(1)求点的轨迹的方程;(2)已知不过原点的直线与相交于,两点,且线段始终被直线平分.求的面积取最大时直线的方程.20.(12分)如图,在四棱锥中,为平行四边形,,平面,且,点是的中点.(1)求证:平面;(2)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.21.(12分)已知椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3(1)求椭圆E的方程;(2)若A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,,求22.(10分)记为数列的前项和,且(1)求的通项公式;(2)设,求数列的前项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.2、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D3、D【解析】由已知条件推导出,.由此利用裂项求和法能求出【详解】解:由,可得,解得,则.∴,故选:【点睛】本题考查了函数的性质、数列的“裂项求和”,考查了推理能力与计算能力,属于中档题4、D【解析】根据互斥事件和对立事件的定义判断【详解】当第一次取出1,第二次取出4时,甲丙同时发生,不互斥不对立;第二次取出的球的数字是6与两次取出的球的数字之和是5不可能同时发生,但可以同时不发生,不对立,当第一次取出1,第二次取出3时,甲与丁同时发生,不互斥不对立,两次取出的球的数字之和是5与两次取出的球的数字之和是偶数不可以同时发生,但可以同时不发生,因此是互斥不对立故选:D5、C【解析】由题意可得,的方程为,设、,联立直线与抛物线方程可求,利用抛物线的定义计算即可求解.【详解】由上可得:焦点,直线的方程为,设,,由,可得,则有,由抛物线的定义可得:,故选:C.6、A【解析】以A为原点建立空间直角坐标系,求出E,F,D,D1点的坐标,利用向量求法求解【详解】如图,以A为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选:A【点睛】本题考查异面直线所成角的求法,属于基础题.7、B【解析】求得倾斜角的正切值即得【详解】k=tan120°=.故选:B8、C【解析】求出抛物线的焦点,设出直线方程,代入抛物线方程,运用韦达定理和向量坐标表示,解得,即可得出直线的方程.【详解】解:抛物线的焦点,设直线为,则,整理得,则,.由可得,代入上式即可得,所以,整理得:.故选:C.【点睛】本题考查直线和抛物线的位置关系,主要考查韦达定理和向量共线的坐标表示,考查运算能力,属于中档题.9、D【解析】求得,根据的面积列方程,由此求得,进而求得双曲线的渐近线方程.【详解】依题意,双曲线的一条渐近线为,则,所以,所以,所以.所以双曲线渐近线方程为.故选:D【点睛】本小题主要考查双曲线渐近线的有关计算,属于中档题.10、A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题11、A【解析】在长方体中建立空间直角坐标系,求出相关点的坐标,进而求得向量,的坐标,利用向量的夹角公式即可求得答案.详解】如图,由题意可知DA,DC,两两垂直,则以D为原点,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系.设,则,,,,,,从而,故异面直线与所成角的余弦值是,故选:A.12、B【解析】求出焦点,则可得出,即可求出渐近线方程.【详解】由椭圆可得焦点为,则设双曲线方程为,可得,则离心率,解得,则,所以渐近线方程为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】化简椭圆的方程为标准形式,列出不等式,即可求解.【详解】由题意,方程可化为,因为方程表示焦点在轴上的椭圆,可得,解得,实数的取值范围是.故答案为:.14、【解析】构造新函数,求导根据导数大于等于零得到,构造,求导得到单调区间,计算函数最小值得到答案.【详解】当时,不等式恒成立,所以,所以在上是增函数,,则上恒成立,即在上恒成立,令,则,当时,,当时,,所以,所以故答案为:15、①.6;②.48.【解析】先通过准线求出p,写出抛物线方程和直线方程,联立得出,进而求出弦AB的长.【详解】由知准线方程为,又准线过(-3,3),可得,;焦点坐标为,故直线方程为,和抛物线方程联立,,得,故,又.故答案为:6;48.16、(答案合理即可)【解析】当时满足,利用作差比较法即可证明.【详解】解:当时满足条件①②,证明如下:因为,所以;当时,;当时,;综上,.故答案为:(答案合理即可).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)a=3,b=-9.(2)最小值=-24,最大值=8.【解析】由曲线在的值以及切线斜率容易确定a与b的值;根据导数很容易确定函数单调区间以及极值点.【小问1详解】,,,由于切线方程是,当x=1时,y=-8,即,即=-8……①;又切线的斜率为-12,∴……②;联立①②得.【小问2详解】由(1)得:,;当时,,导函数图像如下:在时,单调递增,时,单调递减,时单调递增;∴在x=-1有极大值,x=3有极小值;在区间内:在x=-1有最大值;在x=3有最小值.18、(1)(2)【解析】(1)由题意求出即可求解;(2)由椭圆的定义和三角形面积公式求解即可【小问1详解】因为椭圆C与椭圆有相同的焦点,所以椭圆C的焦点,,,又,所以,,所以椭圆C的标准方程为.【小问2详解】由,,得,,而,所以,所以19、(1)(2)【解析】(1)设,根据题意可得,,利用两点之间的距离公式表示出,化简即可得出结果;(2)设,,线段的中点为,利用两点坐标表示直线斜率的公式和点差法求出直线的斜率,设的方程为,联立椭圆方程并消去y得到关于x的一元二次方程,根据韦达定理表示、进而得出弦长,利用点到直线的距离公式求出原点到的距离,结合基本不等式计算即可.【小问1详解】设,由为线段上一点,且,得,,又,则,整理可得,所以轨迹的方程为;【小问2详解】设,,线段的中点为.∵在直线上,∴,∵A,在轨迹上,∴两式相减,可得,∴,即直线的斜率为,依题意,可设直线的方程为,由可得,则解得且由韦达定理,得,∴∵原点到直线的距离为∴,当且仅当,即时等号成立,即时,三角形的面积最大,此时直线的方程为.20、(1)见解析(2)存在,【解析】(1)连接交于点,由三角形中位线性质知,由线面平行判定定理证得结论;(2)以为原点建立空间直角坐标系,假设,可用表示出点坐标;根据二面角的向量求法可根据二面角的余弦值构造出关于的方程,从而解得结果.【详解】(1)连接交于点,连接,四边形为平行四边形,为中点,又为中点,,平面,平面,平面;(2)平面,,两两互相垂直,则以为坐标原点,可建立如下图所示的空间直角坐标系:则,,,,,,设,且,则,,即,设平面的法向量,又,,则,令,则,,;设平面的一个法向量,又,,则,令,则,,;,解得:或,二面角的余弦值为,二面角为锐二面角,不满足题意,舍去,即.在线段上存在点,时,二面角的余弦值为.【点睛】本题考查立体几何中的线面平行关系的证明、存在性问题的求解;求解存在性问题的关键是能够利用共线向量的方式将所求点坐标表示出来,进而利用二面角的向量求法构造方程;易错点是忽略二面角的范围,造成参数值求解错误.21、(1);(2)【解析】(1)根据离心率和最大距离建立等式即可求解;(2)根据弦长,求出直线方程,解出点的坐标即可得解.【详解】(1)椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3,所以,所以,所以椭圆E的方程;(2)A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,所以线段A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论