版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省遵义航天高中高二上数学期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A. B.C. D.2.已知函数,在上随机取一个实数,则使得成立的概率为()A. B.C. D.3.抛物线C:的焦点为F,P,R为C上位于F右侧的两点,若存在点Q使四边形PFRQ为正方形,则()A. B.C. D.4.直线x-y+1=0被椭圆+y2=1所截得的弦长|AB|等于()A. B.C. D.5.阿基米德(公元前287年~公元前212年)不仅是著名物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A B.C. D.6.数列是公差不为零的等差数列,为其前n项和.若对任意的,都有,则的值不可能是()A. B.2C. D.37.直线l的方向向量为,且l过点,则点到l的距离为()A B.C. D.8.如果一个矩形长与宽的比值为,那么称该矩形为黄金矩形.如图,已知是黄金矩形,,分别在边,上,且也是黄金矩形.若在矩形内任取一点,则该点取自黄金矩形内的概率为()A. B.C. D.9.在各项都为正数的数列中,首项为数列的前项和,且,则()A. B.C. D.10.命题:,的否定为()A., B.不存在,C., D.,11.已知抛物线的焦点与椭圆的一个焦点重合,过坐标原点作两条互相垂直的射线,,与分别交于,则直线过定点()A. B.C. D.12.抛物线的准线方程是A.x=1 B.x=-1C. D.二、填空题:本题共4小题,每小题5分,共20分。13.射击队某选手命中环数的概率如下表所示:命中环数10987概率0.320.280.180.120.1该选手射击两次,两次命中环数相互独立,则他至少命中一次9环或10环的概率为_________________.(结果用小数表示)14.如图,在直棱柱中,,则异面直线与所成角的余弦值为___________.15.设双曲线的焦点为,点为上一点,,则为_____.16.双曲线的渐近线方程是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足:成等差数列,成等比数列.(1)求的通项公式:(2)在数列的每相邻两项与间插入个,使它们和原数列的项构成一个新数列,数列的前项和记为,求及.18.(12分)设等差数列的前项和为,为各项均为正数的等比数列,且,,再从条件①:;②:;③:这三个条件中选择一个作为已知,解答下列问题:(1)求和的通项公式;(2)设,数列的前项和为,求证:19.(12分)如图,四棱锥中,底面为正方形,底面,,点,,分别为,,的中点,平面棱(1)试确定的值,并证明你的结论;(2)求平面与平面夹角的余弦值20.(12分)已知椭圆过点,离心率为(1)求椭圆的标准方程;(2)过椭圆的上顶点作直线l交抛物线于A,B两点,O为坐标原点①求证:;②设OA,OB分别与椭圆相交于C,D两点,过点O作直线CD的垂线OH,垂足为H,证明:为定值21.(12分)已知函数.(1)求的单调区间;(2)讨论的零点个数.22.(10分)已知等差数列满足,前7项和为(Ⅰ)求的通项公式(Ⅱ)设数列满足,求的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B2、B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.【详解】由,得,解得,在区间上随机取一实数,则实数满足不等式的概率为故选:B3、A【解析】不妨设,不妨设,则,利用抛物线的对称性及正方形的性质列出的方程求得后可得结论【详解】如图所示,设,不妨设,则,由抛物线的对称性及正方形的性质可得,解得(正数舍去),所以故选:A4、A【解析】联立方程组,求出交点坐标,利用两点间的距离公式求距离.【详解】由得交点为(0,1),,则|AB|==.故选:A.5、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.6、A【解析】由已知建立不等式组,可求得,再对各选项逐一验证可得选项.【详解】解:因为数列是公差不为零的等差数列,为其前n项和.对任意的,都有,所以,即,解得,则当时,,不成立;当时,,成立;当时,,成立;当时,,成立;所以的值不可能是,故选:A.7、C【解析】利用向量投影和勾股定理即可计算.【详解】∵,∴又,∴在方向上的投影,∴P到l距离故选:C.8、B【解析】由几何概型的面积型,只需求小矩形的面积和大矩形面积之比.【详解】由题意,不妨设,则,又也是黄金矩形,则,又,解得,于是大矩形面积为:,小矩形的面积为,由几何概型的面积型,概率为若在矩形内任取一点,则该点取自黄金矩形内的概率为:.故选:B.9、C【解析】当时,,故可以得到,因为,进而得到,所以是等比数列,进而求出【详解】由,得,得,又数列各项均为正数,且,∴,∴,即∴数列是首项,公比的等比数列,其前项和,得,故选:C.10、D【解析】含有量词的命题的否定方法:先改变量词,然后再否定结论即可【详解】解:命题:,的否定为:,故选:D11、A【解析】由椭圆方程可求得坐标,由此求得抛物线方程;设,与抛物线方程联立可得韦达定理的形式,根据可得,由此构造方程求得,根据直线过定点的求法可求得定点.【详解】由椭圆方程知其焦点坐标为,又抛物线焦点,,解得:,则抛物线的方程为,由题意知:直线斜率不为,可设,由得:,则,即,设,,则,,,,,解得:或;又与坐标原点不重合,,,当时,,直线恒过定点.故选:A.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于或的一元二次方程的形式;②利用求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.12、C【解析】先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程【详解】解:整理抛物线方程得,∴p=∵抛物线方程开口向上,∴准线方程是y=﹣故答案为C【点睛】本题主要考查抛物线的标准方程和简单性质.属基础题二、填空题:本题共4小题,每小题5分,共20分。13、84【解析】先求出该选手射击两次,两次命中的环数都低于9环的概率,由对立事件的概率可得答案.【详解】该选手射击一次,命中的环数低于9环的概率为该选手射击两次,两次命中的环数都低于9环的概率为所以他至少命中一次9环或10环的概率为故答案:0.8414、【解析】建立空间直角坐标系后求相关的向量后再用夹角公式运算即可.【详解】如图,以C为坐标原点,所在直线为x,y,z轴,建立空间直角坐标系,则,所以,所以,故异面直线与所成角的余弦值为,故答案为:.15、【解析】将方程化为双曲线的标准方程,再利用双曲线的定义进行求解.【详解】将化为,所以,,由双曲线的定义,得:,即,所以或(舍)故答案为:.16、【解析】由双曲线的方程可知,,即可直接写出其渐近线的方程.【详解】由双曲线的方程为,可知,;则双曲线的渐近线方程为.故答案:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解析】(1)根据等差数列和等比数列的通项公式进行求解即可;(2)根据等差数列的通项公式,结合等比数列的前项和公式进行求解即可.【小问1详解】设等差数列的公差为,因为成等差数列,所以有,因成等比数列,所以,所以;【小问2详解】由题意可知:在和之间插入个,在和之间插入个,,在和之间插入个,此时共插入的个数为:,在和之间插入个,此时共插入的个数为:,因此.18、(1)an=n,bn=(2)证明见解析【解析】(1)设等差数列的公差为d,等比数列的公比为q,q>0,由等差数列和等比数列的通项公式及前n项和公式,列出方程组求解即可得答案;(2)求出,利用裂项相消求和法求出前项和为,即可证明【小问1详解】解:设等差数列的公差为d,等比数列的公比为q,q>0,选①:,又,,可得1+5d=3q,1+4d=5d,解得d=1,q=2,则an=1+n﹣1=n,bn=;选②:,又a1=b1=1,a6=3b2,可得1+5d=3q,q4=4(q3﹣q2),解得d=1,q=2,则an=1+n﹣1=n,bn=;选③:,又a1=b1=1,a6=3b2,可得1+5d=3q,8+28d=6(3+3d),解得d=1,q=2,则an=1+n﹣1=n,bn=;小问2详解】证明:由(1)知,,,所以19、(1),证明见解析(2)【解析】(1),利用线面平行的判定和性质可得答案;(2)以为原点,所在直线分别为的正方向建立空间直角坐标系,求出平面的法向量和平面的法向量由向量夹角公式可得答案.【小问1详解】.证明如下:在△中,因为点分别为的中点,所以//.又平面,平面,所以//平面.因为平面,平面平面,所以//所以//.在△中,因为点为的中点,所以点为的中点,即.【小问2详解】因为底面为正方形,所以.因为底面,所以,.如图,建立空间直角坐标系,则,,,因为分别为的中点,所以.所以,.设平面的法向量,则即令,于.又因为平面的法向量为,所以所以平面与平面夹角的余弦值为.20、(1)(2)①证明见解析;②证明见解析【解析】(1)根据离心率及过点求出求解即可;(2)①设直线l的方程为,利用向量的数量积计算证明即可;②设直线CD方程为,利用求出,再由点O到直线CD的距离即可求证.【小问1详解】因为,所以,又因为,解得,,所以椭圆的方程为;【小问2详解】①证明:设,,依题意,直线l斜率存在,设直线l的方程为,联立方程,消去y得,所以,又因为,所以,因此,②证明:设,,设直线CD方程为,因为,所以,则,联立,得当时,,则所以,即满足则,即为定值21、(1)单调递增区间是和,单调递减区间是(2)时,有1个零点;或时,有2个零点;时,有3个零点.【解析】(1)求解函数的导数,再运用导数求解函数的单调区间即可;(2)根据导数分析原函数的极值,进而讨论其零点个数.【详解】(1)因为,所以由,得或;由,得.故单调递增区间是和,单调递减区间是.(2)由(1)可知的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 32151.37-2024温室气体排放核算与报告要求第37部分:烧结类墙体屋面及道路用建筑材料生产企业
- 农村产业融合风险应对策略
- 商场工作人员工作总结范文
- 商学院毕业典礼致辞(5篇)
- 冶金与材料(中级)专项测试题及答案(一)
- 专题11.2 立方根【七大题型】(举一反三)(华东师大版)(原卷版)
- 56.学校心理健康教育工作计划和目标
- 语文统编版(2024)一年级上册识字6日月明 教案
- 广东高考高三英语复习系列-语法填空专练
- 高中英语 课文语法填空(一) 新人教版必修
- 职业学校学生心理特点课件
- 有机化学名词解释
- 炼钢总厂停电事故应急预案
- 脊椎动物比较表格
- 经济法智慧树知到课后章节答案2023年下温州理工学院
- 《健康生活快乐成长》主题班会课件
- 小米公司的企业文化
- 匆匆朗读背景
- 房产过户模板5篇
- 上海市闵行区2023年七年级上学期语文期中考试试卷(附答案)
- Unit3Myweekendplan(课件)人教PEP版英语六年级上册
评论
0/150
提交评论