版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省泸州市泸县五中高一数学第一学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若的外接圆的圆心为O,半径为4,,则在方向上的投影为()A.4 B.C. D.12.设,为平面向量,则“存在实数,使得”是“向量,共线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知,,,则,,三者的大小关系是()A. B.C. D.4.一条直线与两条平行线中的一条为异面直线,则它与另一条()A.相交 B.异面C.相交或异面 D.平行5.要得到函数y=sin(2x+)的图像,只需把函数y=sin2x的图像A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位6.在下列区间中函数的零点所在的区间为()A. B.C. D.7.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.20138.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度得到 B.向右平移个单位长度得到C.向左平移个单位长度得到 D.向右平移个单位长度得到9.已知函数,有下面四个结论:①的一个周期为;②的图像关于直线对称;③当时,的值域是;④在(单调递减,其中正确结论的个数是()A.1 B.2C.3 D.410.方程的解所在的区间是A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某公司在甲、乙两地销售同一种品牌的汽车,利润(单位:万元)分别为和,其中为销售量(单位:辆).若该公司在两地共销售15辆汽车,则该公司能获得的最大利润为_____万元.12.设函数,则____________13.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______14.已知某扇形的半径为,面积为,那么该扇形的弧长为________.15.函数的最大值与最小值之和等于______16.已知,,,则,,的大小关系是______.(用“”连接)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角终边上一点.(1)求的值;(2)求的值.18.已知,,且.(1)求的值;(2)求β.19.—条光线从点发出,经轴反射后,经过点,求入射光线和反射光线所在的直线方程.20.已知,计算:(1);(2).21.我们知道,声音由物体的振动产生,以波的形式在一定的介质(如固体、液体、气体)中进行传播.在物理学中,声波在单位时间内作用在与其传递方向垂直的单位面积上的能量称为声强I().但在实际生活中,常用声音的声强级D(分贝)来度量.为了描述声强级D()与声强I()之间的函数关系,经过多次测定,得到如下数据:组别1234567声强I()①声强级D()1013.0114.7716.022040②现有以下三种函数模型供选择:(1)试根据第1-5组的数据选出你认为符合实际的函数模型,简单叙述理由,并根据第1组和第5组数据求出相应的解析式;(2)根据(1)中所求解析式,结合表中已知数据,求出表格中①、②数据的值;(3)已知烟花的噪声分贝一般在,其声强为;鞭炮的噪声分贝一般在,其声强为;飞机起飞时发动机的噪声分贝一般在,其声强为,试判断与的大小关系,并说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】过作的垂线,垂足为,分析条件可得,作出图分析结合投影的几何意义可进而可求得投影..【详解】过作的垂线,垂足为,则M为BC的中点,连接AM,由,可得,所以三点共线,即有,且.所以.在方向上的投影为,故选:C.2、A【解析】结合充分条件和必要条件的概念以及向量共线即可判断.【详解】充分性:由共线定理即可判断充分性成立;必要性:若,,则向量,共线,但不存在实数,使得,即必要性不成立.故选:A.3、C【解析】分别求出,,的范围,即可比较大小.【详解】因为在上单调递增,所以,即,因为在上单调递减,所以,即,因为在单调递增,所以,即,所以,故选:C4、C【解析】如下图所示,三条直线平行,与异面,而与异面,与相交,故选C.5、B【解析】将目标函数变为,由此求得如何将变为目标函数.【详解】依题意,目标函数可转化为,故只需将向左平移个单位,故选B.【点睛】本小题主要考查三角函数图像变换中的平移变换,属于基础题.6、A【解析】根据解析式判断函数单调性,再结合零点存在定理,即可判断零点所处区间.【详解】因为是单调增函数,故是单调增函数,至多一个零点,又,故的零点所在的区间为.故选:A.7、B【解析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为8、A【解析】先利用辅助角公式将函数变形,然后利用图象的平移变换分析求解即可【详解】解:函数,将函数图象向左平移个单位可得的图象故选:9、B【解析】函数周期.,故是函数的对称轴.由于,故③错误.,函数在不单调.故有个结论正确.【点睛】本题主要考查三角函数图像与性质,包括了周期性,对称性,值域和单调性.三角函数的周期性,其中正弦和余弦函数的周期都是利用公式来求解,而正切函数函数是利用公式来求解.三角函数的对称轴是使得函数取得最大值或者最小值的地方.对于选择题10、C【解析】设,则由指数函数与一次函数的性质可知,函数与的上都是递增函数,所以在上单调递增,故函数最多有一个零点,而,,根据零点存在定理可知,有一个零点,且该零点处在区间内,故选答案C.考点:函数与方程.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设该公司在甲地销x辆,那么乙地销15-x辆,利润L(x)=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30.由L′(x)=-0.3x+3.06=0,得x=10.2.且当x<10.2时,L′(x)>0,x>10.2时,L′(x)<0,∴x=10时,L(x)取到最大值,这时最大利润为45.6万元答案:45.6万元12、2【解析】利用分段函数由里及外逐步求解函数的值即可.【详解】解:由已知,所以,故答案为:.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力.13、【解析】先求出时,,,然后解不等式,即可求解,得到答案【详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【点睛】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.14、【解析】根据扇形面积公式可求得答案.【详解】设该扇形的弧长为,由扇形的面积,可得,解得.故答案.【点睛】本题考查了扇形面积公式的应用,考查了学生的计算能力,属于基础题.15、0【解析】先判断函数为奇函数,则最大值与最小值互为相反数【详解】解:根据题意,设函数的最大值为M,最小值为N,又由,则函数为奇函数,则有,则有;故答案为0【点睛】本题考查函数奇偶性,利用奇函数的性质求解是解题关键16、【解析】结合指数函数、对数函数的知识确定正确答案.【详解】,,所以故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4;(2).【解析】(1)根据三角函数的定义可求出,然后分子分母同时除以,将弦化切,即可求出结果;(2)根据三角函数的定义可求出,,再利用诱导公式将表达式化简,即可求出结果.【详解】解:(1)因为终边上一点,所以,所以.(2)已知角终边上一点,则,所以,,所以18、(1);.【解析】(1)先根据,且,求出,再求;(2)先根据,,求出,再根据求解即可.【详解】(1)因且,所以,所以.(2)因为,所以,又因为,所以,,所以.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角19、入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0【解析】如图所示,作A点关于x轴的对称点A′,显然,A′坐标为(3,-2),连接A′B,则A′B所在直线即为反射光线由两点式可得直线A′B的方程为,即2x+y-4=0.同理,点B关于x轴的对称点为B′(-1,-6),由两点式可得直线AB′的方程为,即2x-y-4=0,∴入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0.考点:两点式直线方程,对称问题.20、(1)(2)【解析】(1)由同角三角函数关系得,再代入化简得结果(2)利用分母,将式子弦化切,再代入化简得结果试题解析:解:(Ⅰ)∵tanα=3,(Ⅱ)∵tanα=3,∴sinα•cosα=21、(1),理由见解析(2),(3),理由见解析【解析】(1)根据表格中的数据进行分析,可排除一次函数和二次函数,再根据待定系数法,即可得到结果;(2)由(1),令,可求出的值,即可知道①处的值;由已知可得时,可得,进而可求出当时的值,进而求出②处的值;(3)设烟花噪声、鞭炮噪声和飞机起飞时发动机噪声的声强级分别为,由已知可得,代入关系式,即可判断与的大小关系.【小问1详解】解:选择.由表格中的前四组数据可知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台理工学院《程序设计基础(1)》2021-2022学年第一学期期末试卷
- 投资风险防控计划
- 资产负债管理方案计划
- 许昌学院《三维设计基础》2021-2022学年第一学期期末试卷
- 徐州工程学院《文案设计》2021-2022学年第一学期期末试卷
- 徐州工程学院《软件项目管理》2023-2024学年第一学期期末试卷
- 提高公司财务团队服务水平的培训计划
- 小班早期阅读推广策略计划
- 幼儿园教研活动的评估与反思计划
- 职业生涯转型与新年计划
- 高中英语:倒装句专项练习(附答案)
- 学校食堂供货商选择、评价和退出管理制度
- 2024届研究生入学考试政治理论知识全真模拟试卷及答案(共七套)
- 《大数据会计基础》测验题
- 烃自由基结构、稳定性和烷烃氯代反应选择性的理论研究
- 医院检验外送标本规章制度
- 7.2-共建美好集体-(课件)2024-2025学年七年级道德与法治上册统编版
- 《中华人民共和国道路运输条例》知识专题培训
- 2024年内江隆昌市公安局招考聘用警务辅助人员30人高频难、易错点500题模拟试题附带答案详解
- 【课件】第七单元能源的合理利用与开发新版教材单元分析-九年级化学人教版(2024)上册
- 2024年认证行业法律法规及认证基础知识 CCAA年度确认 试题与答案
评论
0/150
提交评论