版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省新平县一中高二上数学期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A. B.C. D.2.下列通项公式中,对应数列是递增数列的是()A B.C. D.3.过,两点的直线的一个方向向量为,则()A.2 B.2C.1 D.14.若直线与圆相切,则()A. B.或2C. D.或5.公元前6世纪,古希腊的毕达哥拉斯学派研究发现了黄金分割,简称黄金数.离心率等于黄金数的倒数的双曲线称为黄金双曲线.若双曲线是黄金双曲线,则()A. B.C. D.6.已知等差数列,,,则数列的前项和为()A. B.C. D.7.已知三个顶点都在抛物线上,且为抛物线的焦点,若,则()A.6 B.8C.10 D.128.若函数在上为增函数,则a的取值范围为()A. B.C. D.9.已知数列满足,,记数列的前n项和为,若对于任意,不等式恒成立,则实数k的取值范围为()A. B.C. D.10.已知是双曲线的左焦点,为右顶点,是双曲线上的点,轴,若,则双曲线的离心率为()A. B.C. D.11.命题“,使得”的否定形式是A.,使得 B.,使得C.,使得 D.,使得12.已知向量与平行,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过椭圆的右焦点作两条相互垂直的直线m,n,直线m与椭圆交于A,B两点,直线n与椭圆交于C,D两点,若.则下列方程①;②;③;④.其中可以作为直线AB的方程的是______(写出所有正确答案的序号)14.已知正三角形边长为a,则该三角形内任一点到三边的距离之和为定值.类比上述结论,在棱长为a的正四面体内,任一点到其四个面的距离之和为定值_____.15.椭圆上一点到两个焦点的距离之和等于,则的标准方程为______.16.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图,则a=______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知公差不为的等差数列的首项,且、、成等比数列.(1)求数列的通项公式;(2)设,,是数列的前项和,求使成立的最大的正整数.18.(12分)如图,在平面直角坐标系中,点,,(1)求直线BC的方程;(2)记的外接圆为圆M,若直线OC被圆M截得的弦长为4,求点C的坐标19.(12分)已知函数(1)讨论函数的单调性;(2)若对任意的,都有成立,求的取值范围20.(12分)在平面直角坐标系xOy中,曲线的参数方程为,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)已知,曲线与曲线相交于A,B两点,求.21.(12分)如图,在正四棱柱中,是上的点,满足为等边三角形.(1)求证:平面;(2)求点到平面的距离.22.(10分)已知在时有极值0.(1)求常数,的值;(2)求在区间上的最值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】解:,设F1F2=2c,∵△F2AB是等边三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故选D2、C【解析】根据数列单调性的定义逐项判断即可.【详解】对于A,B选项对应数列是递减数列.对于C选项,,故数列是递增数列.对于D选项,由于.所以数列不是递增数列故选:C.3、C【解析】应用向量的坐标表示求的坐标,由且列方程求y值.【详解】由题设,,则且,所以,即,可得.故选:C4、D【解析】根据圆心到直线的距离等于半径列方程即可求解.【详解】由圆可得圆心,半径,因为直线与圆相切,所以圆心到直线的距离,整理可得:,所以或,故选:D.5、A【解析】根据黄金双曲线的定义直接列方程求解【详解】双曲线中的,所以离心率,因为双曲线是黄金双曲线,所以,两边平方得,解得或(舍去),故选:A6、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.7、D【解析】设,,,由向量关系化为坐标关系,再结合抛物线的焦半径公式即可计算【详解】由得焦点,准线方程为,设,,由得则,化简得所以故选:D8、C【解析】求出函数的导数,要使函数在上为增函数,要保证导数在该区间上恒正即可,由此得到不等式,解得答案.详解】由题意可知,若在递增,则在恒成立,即有,则,故选:C.9、C【解析】由已知得,根据等比数列的定义得数列是首项为,公比为的等比数列,由此求得,然后利用裂项求和法求得,进而求得的取值范围.【详解】解:依题意,当时,,则,所以数列是首项为,公比为的等比数列,,即,所以,所以,所以的取值范围是.故选:C.10、C【解析】根据条件可得与,进而可得,,的关系,可得解.【详解】由已知得,设点,由轴,则,代入双曲线方程可得,即,又,所以,即,整理可得,故,解得或(舍),故选:C.11、D【解析】的否定是,的否定是,的否定是.故选D【考点】全称命题与特称命题的否定【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定12、D【解析】根据两向量平行可求得、的值,即可得出合适的选项.【详解】由已知,解得,,则.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、①②【解析】①②结合椭圆方程得到与椭圆参数的关系,即可判断;③④联立直线与椭圆方程,利用弦长公式求,即可判断.【详解】由题设,且右焦点为,①时直线,故,则符合题设;②时,同①知:符合题设;③时直线,联立直线AB与椭圆方程并整理得:,则,同理可得,则,不合题设;④时,同③分析知:,不合题设;故答案为:①②.14、【解析】利用正四面体内任一点可将正四面体分成四个小四面体,令它们的高分别为,由体积相等即可求得;【详解】正三角形边长为a,则该三角形内任一点到三边的距离分别为,即有:,解得同理,棱长为a的正四面体内,任一点到其四个面的距离分别为,即有:,解得故答案为:【点睛】本题考查了利用空间几何体的等体积法求高的和为定值,属于简单题;15、【解析】根据椭圆定义求出其长半轴长,再结合焦点坐标即可计算作答.【详解】因椭圆上一点到两个焦点的距离之和等于,则该椭圆长半轴长,而半焦距,于是得短半轴长b,有,所以的标准方程为.故答案为:16、3##【解析】由频率之和等于1,即矩形面积之和为1可得.【详解】由题知,解得.故答案为:0.3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设等差数列的公差为,根据已知条件可得出关于实数的等式,结合可求得的值,由此可得出数列的通项公式;(2)利用裂项求和法求出,解不等式即可得出结果.【小问1详解】解:设等差数列公差为,则,由题意可得,即,整理得,,解得,故.【小问2详解】解:,所以,,由得,可得,所以,满足成立的最大的正整数的值为.18、(1);(2).【解析】(1)延长CB交x轴于点N,根据给定条件求出即可计算作答.(2)利用待定系数法求出圆M的方程,再由给定弦长确定C点位置,推理计算得解.【小问1详解】延长CB交x轴于点N,如图,因,则,又,则有,又,于是得,则直线BC的倾斜角为120°,直线BC的斜率,因此,,即所以直线BC的方程为.【小问2详解】依题意,设圆M的方程为,由(1)得:,解得,于是得圆M的方程为,即,圆心,半径,因直线OC被圆M所截的弦长为4,则直线OC过圆心,其方程为,由解得,即,所以点C的坐标是.19、(1)答案见解析;(2).【解析】(1)求,分别讨论不同范围下的正负,分别求单调性;(2)由(1)所求的单调性,结合,分别求出的范围再求并集即可.【详解】解:(1)由已知定义域为,当,即时,恒成立,则在上单调递增;当,即时,(舍)或,所以在上单调递减,在上单调递增.所以时,在上单调递增;时,在上单调递减,在上单调递增.(2)由(1)可知,当时,在上单调递增,若对任意的恒成立,只需,而恒成立,所以成立;当时,若,即,则在上单调递增,又,所以成立;若,则在上单调递减,在上单调递增,又,所以,,不满足对任意的恒成立.所以综上所述:.20、(1),(2)2【解析】(1)消参数即可得曲线的普通方程,利用极坐标方程与直角坐标方程之间的转化关系式,从而曲线的直角坐标方程;(2)将的参数方程代入的直角坐标方程,得关于的一元二次方程,由韦达定理得,即可得的值.【小问1详解】由,消去参数,得,即,所以曲线的普通方程为.由,得,即,所以曲线的直角坐标方程为【小问2详解】将代入,整理得,则,令方程的两个根为由韦达定理得,所以.21、(1)证明见解析;(2).【解析】(1)根据题意证明,,然后根据线面垂直的判定定理证明问题;(2)结合(1),进而利用等体积法求得答案.【小问1详解】由题意,,为等边三角形,,∵平面ABCD,∴,则,即为中点.连接,∵平面,平面,∴,易得,则,又,于是,即,同理,即,又平面.【小问2详解】设M到平面的距离为d,,∴.易得,取BD的中点N,连接,则,所以,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论