2025届河南省周口市重点高中高二数学第一学期期末综合测试模拟试题含解析_第1页
2025届河南省周口市重点高中高二数学第一学期期末综合测试模拟试题含解析_第2页
2025届河南省周口市重点高中高二数学第一学期期末综合测试模拟试题含解析_第3页
2025届河南省周口市重点高中高二数学第一学期期末综合测试模拟试题含解析_第4页
2025届河南省周口市重点高中高二数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省周口市重点高中高二数学第一学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内的极大值点有()A.1个 B.2个C.3个 D.4个2.若命题“或”与命题“非”都是真命题,则A.命题与命题都是真命题B.命题与命题都是假命题C.命题是真命题,命题是假命题D.命题是假命题,命题是真命题3.经过直线与直线的交点,且平行于直线的直线方程为()A. B.C. D.4.已知为虚数单位,复数是纯虚数,则()A. B.4C.3 D.25.设A=37+·35+·33+·3,B=·36+·34+·32+1,则A-B的值为()A.128 B.129C.47 D.06.中心在原点的双曲线C的右焦点为,实轴长为2,则双曲线C的方程为()A. B.C. D.7.已知是函数的导函数,则()A. B.C. D.8.若抛物线焦点与椭圆的右焦点重合,则的值为A. B.C. D.9.等比数列的各项均为正数,且,则A. B.C. D.10.的展开式中的系数为,则()A. B.C. D.11.若椭圆与直线交于两点,过原点与线段AB中点的直线的斜率为,则A. B.C. D.212.我国古代数学名著《算法统宗》记有行程减等问题:三百七十八里关,初行健步不为难次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公仔细算相还.意为:某人步行到378里的要塞去,第一天走路强壮有力,但把脚走痛了,次日因脚痛减少了一半,他所走的路程比第一天减少了一半,以后几天走的路程都比前一天减少一半,走了六天才到达目的地.请仔细计算他每天各走多少路程?在这个问题中,第四天所走的路程为()A.96 B.48C.24 D.12二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,的外接圆半径为,则边c的长为_____.14.已知抛物线的焦点坐标为,则该抛物线上一点到焦点的距离的取值范围是___________.15.如图,在四棱锥中,平面,底面为矩形,分别为的中点,连接,则点到平面的距离为__________.16.已知,是椭圆:的两个焦点,点在上,则的最大值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,平面,,,,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求直线与平面所成角的正弦值.18.(12分)设或,(1)若时,p是q的什么条件?(2)若p是q的必要不充分条件,求a的取值范围19.(12分)已知函数,.(1)当时,求函数在区间上的最大值;(2)当时,求函数的极值.20.(12分)已知抛物线C:上一点到焦点F的距离为2(1)求实数p的值;(2)若直线l过C的焦点,与抛物线交于A,B两点,且,求直线l的方程21.(12分)已知数列的前项和为,并且满足(1)求数列的通项公式;(2)若,数列的前项和为,求证:22.(10分)已知函数(m≥0).(1)当m=0时,求曲线在点(1,f(1))处的切线方程;(2)若函数的最小值为,求实数m的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用极值点的定义求解.【详解】由导函数的图象知:函数在内,与x轴有四个交点:第一个点处导数左正右负,第二个点处导数左负右正,第三个点处导数左正右正,第四个点处导数左正右负,所以函数在开区间内的极大值点有2个,故选:B2、D【解析】因为非p为真命题,所以p为假命题,又p或q为真命题,所以q为真命题,选D.3、B【解析】求出两直线的交点坐标,可设所求直线的方程为,将交点坐标代入求得,即可的解.【详解】解:由,解得,即两直线的交点坐标为,设所求直线的方程为,则有,解得,所以所求直线方程为,即.故选:B.4、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由纯虚数,∴,解得:,则,故选:C5、A【解析】先化简A-B,发现其结果为二项式展开式,然后计算即可【详解】A-B=37-·36+·35-·34+·33-·32+·3-1=故选A.【点睛】本题主要考查了二项式定理的运用,关键是通过化简能够发现其结果在形式上满足二项式展开式,然后计算出结果,属于基础题6、D【解析】根据条件,求出,的值,结合双曲线的方程进行求解即可【详解】解:设双曲线的方程为由已知得:,,再由,,双曲线的方程为:故选:D7、B【解析】求出,代值计算可得的值.【详解】因为,则,因此,.故选:B.8、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D9、B【解析】根据等比数列的性质,结合已知条件,求得,进而求得的值.【详解】由于数列是等比数列,故,所以,故.故选B.【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.10、B【解析】根据二项式展开式的通项,先求得x的指数为1时r的值,再求得a的值.【详解】由题意得:二项式展开式的通项为:,令,则,故选:B11、D【解析】细查题意,把代入椭圆方程,得,整理得出,设出点的坐标,由根与系数的关系可以推出线段的中点坐标,再由过原点与线段的中点的直线的斜率为,进而可推导出的值.【详解】联立椭圆方程与直线方程,可得,整理得,设,则,从而线段的中点的横坐标为,纵坐标,因为过原点与线段中点的直线的斜率为,所以,所以,故选D.【点睛】该题是一道关于直线与椭圆的综合性题目,涉及到的知识点有直线与椭圆相交时对应的解题策略,中点坐标公式,斜率坐标公式,属于简单题目.12、C【解析】每天所走的里程构成公比为的等比数列,设第一天走了里,利用等比数列基本量代换,直接求解.【详解】由题意可知:每天所走的里程构成公比为的等比数列.第一天走了里,第4天走了.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由面积公式求得,结合外接圆半径,利用正弦定理得到边c的长.【详解】,从而,由正弦定理得:,解得:故答案为:14、【解析】根据题意,求得,得到焦点坐标,结合抛物线的定义,得到,根据,求得,即可求解.【详解】由抛物线的焦点坐标为,可得,解得,设抛物线上的任意一点为,焦点为,由抛物线的定义可得,因为,所以,所以抛物线上一点到焦点的距离的取值范围是.故答案为:.15、【解析】利用转化法,根据线面平行的性质,结合三棱锥的体积等积性进行求解即可.【详解】设是的中点,连接,因为是的中点,所以,因为平面,平面,所以平面,因此点到平面的距离等于点到平面的距离,设为,因为平面,所以,,于是有,底面为矩形,所以有,,因为平面,所以,于是有:,由余弦定理可知:cos∠PEC=所以,因此,,因为,所以,故答案为:16、9【解析】根据椭圆的定义可得,结合基本不等式即可求得的最大值.【详解】∵在椭圆上∴∴根据基本不等式可得,即,当且仅当时取等号.故答案为:9.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析;(3).【解析】(1)根据给定条件证得即可推理作答.(2)由已知条件,以点A作原点建立空间直角坐标系,借助空间位置关系的向量证明即可作答.(3)利用(2)中信息,借助空间向量求直线与平面所成角的正弦值.【小问1详解】在四棱锥中,因分别是的中点,则,因平面,平面,所以平面.【小问2详解】在四棱锥中,平面,,以点A为原点,射线AB,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,而且,则,,设平面的法向量,由,令,得,又,因此有,所以平面.【小问3详解】由(2)知,,令直线与平面所成角为,则有,所以直线与平面所成角的正弦值.18、(1)充要条件;(2).【解析】(1)根据解一元二次不等式的方法,结合充分性、必要性的定义进行求解判断即可;(2)根据必要不充分条件的性质进行求解即可.【小问1详解】因为,所以,解得或,显然p是q的充要条件;【小问2详解】,当时,该不等式的解集为全体实数集,显然由,但不成立,因此p是q的充分不必要条件,不符合题意;当时,该不等式的解集为:,显然当时,不一定成立,因此p不是q的必要不充分条件,当时,该不等式解集为:,要想p是q的必要不充分条件,只需,而,所以,因此a的取值范围为:.19、(1)2(2)当时,没有极值;当时,极大值为,极小值为.【解析】(1)当时,,可得:.,,得或,列出函数单调性表格,即可最大值;(2),令,得或,分别讨论和,即可求得的极值.【详解】(1)当时,,所以.令,得或,列表如下:-2-11+0-0+极大值极小值由于,,所以函数在区间上的最大值为2.(2),令,得或.当时,,所以函数在上单调递增,无极值.当时,列表如下:+0-0+极大值极小值函数的极大值为,极小值为.【点睛】本题主要考查根据导数求函数单调性和极值,解题关键是掌握导数求单调性的方法和极值定义,考查分析能力和计算能力,属于中档题.20、(1)2(2)或【解析】(1)根据抛物线上的点到焦点与准线的距离相等可得到结果(2)通过联立抛物线与直线方程利用韦达定理求解关系式即可得到结果【小问1详解】抛物线焦点为,准线方程为,因为点到焦点F距离为2,所以,解得【小问2详解】抛物线C的焦点坐标为,当斜率不存在时,可得不满足题意,当斜率存在时,设直线l的方程为联立方程,得,显然,设,,则,所以,解得所以直线l的方程为或21、(1);(2)证明见解析.【解析】(1)利用和项可求得的通项公式,注意别漏了说明;(2)先用错位相减法求出数列的前项和,从而可知【详解】(1),①当时,,②由①—②可得:,且数列是首项为1,公差为2的等差数列,即(2)由(1)知数列,,则,①∴,②由①﹣②得,∴,.【点睛】本题主要考查给出的一个关系式求数列的通项公式以及用错位相减

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论