广东省茂名市电白县第一中学2025届高二数学第一学期期末调研试题含解析_第1页
广东省茂名市电白县第一中学2025届高二数学第一学期期末调研试题含解析_第2页
广东省茂名市电白县第一中学2025届高二数学第一学期期末调研试题含解析_第3页
广东省茂名市电白县第一中学2025届高二数学第一学期期末调研试题含解析_第4页
广东省茂名市电白县第一中学2025届高二数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省茂名市电白县第一中学2025届高二数学第一学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是函数的导函数,的图象如图所示,则的解集是()A. B.C. D.2.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.23.已知椭圆的长轴长,短轴长,焦距长成等比数列,则椭圆离心率为()A. B.C. D.4.已知数列的通项公式为,其前项和为,则满足的的最小值为()A.30 B.31C.32 D.335.一组样本数据:,,,,,由最小二乘法求得线性回归方程为,若,则实数m的值为()A.5 B.6C.7 D.86.已知函数,若在处取得极值,且恒成立,则实数的最大值为()A. B.C. D.7.已知抛物线,,点在抛物线上,记点到直线的距离为,则的最小值是()A.5 B.6C.7 D.88.等差数列的前项和为,若,,则()A.12 B.18C.21 D.279.已知的二项展开式的各项系数和为32,则二项展开式中的系数为A5 B.10C.20 D.4010.经过点且圆心是两直线与的交点的圆的方程为()A. B.C. D.11.已知等差数列满足,,则()A. B.C. D.12.如图给出的是一道典型的数学无字证明问题:各矩形块中填写的数字构成一个无穷数列,所有数字之和等于1.按照图示规律,有同学提出了以下结论,其中正确的是()A.由大到小的第八个矩形块中应填写的数字为B.前七个矩形块中所填写的数字之和等于C.矩形块中所填数字构成的是以1为首项,为公比的等比数列D.按照这个规律继续下去,第n-1个矩形块中所填数字是二、填空题:本题共4小题,每小题5分,共20分。13.将全体正整数排成一个三角形数阵(如图):按照以上排列的规律,第9行从左向右的第2个数为__________.14.已知直线与直线垂直,则__________15.若函数的递增区间是,则实数______.16.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为45°的直角梯形(如图所示),则该椭圆的离心率为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知公比的等比数列和等差数列满足:,,其中,且是和的等比中项(1)求数列与的通项公式;(2)记数列的前项和为,若当时,等式恒成立,求实数的取值范围18.(12分)如图,AC是圆O的直径,B是圆O上异于A,C的一点,平面ABC,点E在棱PB上,且,,.(1)求证:;(2)当三棱锥的体积最大时,求二面角的余弦值.19.(12分)已知点为椭圆C的右焦点,P为椭圆上一点,且(O为坐标原点),.(1)求椭圆C的标准方程;(2)经过点的直线l与椭圆C交于A,B两点,求弦的取值范围.20.(12分)已知圆C经过点,,且它的圆心C在直线上.(1)求圆C的方程;(2)过点作圆C的两条切线,切点分别为M,N,求三角形PMN的面积.21.(12分)已知数列满足,,数列前项和为.(1)求数列,的通项公式;(2)表示不超过的最大整数,如,设的前项和为,令,求证:.22.(10分)已知函数(1)求关于x的不等式的解集;(2)若对任意的,恒成立,求实数a的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先由图像分析出的正负,直接解不等式即可得到答案.【详解】由函数的图象可知,在区间上单调递减,在区间(0,2)上单调递增,即当时,;当x∈(0,2)时,.因为可化为或,解得:0<x<2或x<0,所以不等式的解集为.故选:C2、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.3、A【解析】由题意,,结合,求解即可【详解】∵椭圆的长轴长,短轴长,焦距长成等比数列∴∴又∵∴∴,即∴e=又在椭圆e>0∴e=故选:A4、C【解析】由条件可得得出,再由解出的范围,得出答案.【详解】由,则由,即,即,所以所以满足的的最小值为为32故选:C5、B【解析】求出样本的中心点,再利用回归直线必过样本的中心点计算作答.【详解】依题意,,则这个样本的中心点为,因此,,解得,所以实数m的值为6.故选:B6、D【解析】根据已知在处取得极值,可得,将在恒成立,转化为,只需求,求出最小值即可得答案【详解】解:,,由在处取得极值,得,解得,所以,,其中,.当时,,此时函数单调递减,当时,,此时函数单调递增,故函数在处取得极小值,,恒成立,转化为,令,,则,,令得,当时,,此时函数单调递减,当时,,此时函数单调递增,所以,即得,故选:D7、D【解析】先求出抛物线的焦点和准线,利用抛物线的定义将转化为的距离,即可求解.【详解】由已知得抛物线的焦点为,准线方程为,设点到准线的距离为,则,则由抛物线的定义可知∵,当点、、三点共线时等号成立,∴,故选:.8、B【解析】根据等差数列的前项和为具有的性质,即成等差数列,由此列出等式,求得答案.【详解】因为为等差数列的前n项和,且,,所以成等差数列,所以,即,解得=18,故选:B.9、B【解析】首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,,所以二项展开式中的系数为.答案选择B【点睛】本题考查二项式展开系数、通项等公式,属于基础题10、B【解析】求出圆心坐标和半径后,直接写出圆的标准方程.【详解】由得,即所求圆的圆心坐标为.由该圆过点,得其半径为1,故圆的方程为.故选:B.【点睛】本题考查了圆的标准方程,属于基础题.11、D【解析】根据等差数列的通项公式求出公差,再结合即可得的值.【详解】因为是等差数列,设公差为,所以,即,所以,所以,故选:D.12、B【解析】根据题意可得矩形块中的数字从大到小形成等比数列,根据等比数列的通项公式可求.【详解】设每个矩形块中的数字从大到小形成数列,则可得是首项为,公比为的等比数列,,所以由大到小的第八个矩形块中应填写的数字为,故A错误;前七个矩形块中所填写的数字之和等于,故B正确;矩形块中所填数字构成的是以为首项,为公比的等比数列,故C错误;按照这个规律继续下去,第个矩形块中所填数字是,故D错误.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、38【解析】根据数阵的规律求得正确答案.【详解】数阵第行有个数,第行有个数,并且数字从开始,每次递增.前行共有个数,第行从左向右的最后一个数是,所以第行从左向右的第个数为.故答案为:14、-3【解析】因为直线与直线垂直,所以考点:本题考查两直线垂直的充要条件点评:若两直线方程分别为,则他们垂直的充要条件是15、【解析】求得二次函数的单调增区间,即可求得参数的值.【详解】因为二次函数开口向上,对称轴为,故其单调增区间为,又由题可知:其递增区间是,故.故答案为:.16、【解析】设圆柱的底面半径为,由题意知,,椭圆的长轴长,短轴长为,可以求出的值,即可得离心率.【详解】设圆柱的底面半径为,依题意知,最长母线与最短母线所在截面如图所示从而因此在椭圆中长轴长,短轴长,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)根据已知条件可得出关于方程,解出的值,可求得的值,即可得出数列与的通项公式;(2)求得,利用错位相减法可求得,分析可知数列为单调递增数列,对分奇数和偶数两种情况讨论,结合参变量分离法可得出实数的取值范围.【详解】(1)设等差数列的公差为,因为,,,且是和的等比中项,所以,整理可得,解得或.若,则,可得,不合乎题意;若,则,可得,合乎题意.所以,;;(2)因为,①,②②①得因为,即对恒成立,所以当且,,故数列为单调递增数列,当为偶数时,,所以;当为奇数时,,所以,即.综上可得18、(1)证明见解析(2)【解析】(1)由圆的性质可得,再由线面垂直的性质可得,从而由线面垂直的判定定理可得平面PAB,所以得,再结合已知条件可得平面PBC,由线面垂直的性质可得结论;(2)由已知条件结合基本不等式可得当三棱锥的体积最大时,是等腰直角三角形,,从而以OB,OC所在直线分别为x轴,y轴,以过点O且垂直于圆O平面的直线为z轴建立如图所示的空间直角坐标系,利用空间向量求解.【小问1详解】证明:因为AC是圆O的直径,点B是圆O上不与A,C重合的一个动点,所以.因为平面ABC,平面ABC,所以.因为,且AB,平面PAB,所以平面PAB.因为平面PAB,所以.因为,,且BC,平面PBC,所以平面PBC.因为平面PBC,所以.【小问2详解】解:因为,,所以,所以三棱锥的体积,(当且仅当“”时等号成立).所以当三棱锥的体积最大时,是等腰直角三角形,.所以以OB,OC所在直线分别为x轴,y轴,以过点O且垂直于圆O平面的直线为z轴建立如图所示的空间直角坐标系,则,,,.因为∽,所以,因为,,所以,所以,.设向量为平面的一个法向量,则即令得,.向量为平面ABC的一个法向量,.因为二面角是锐角,所以二面角的余弦值为.19、(1)(2)【解析】(1)利用椭圆定义求得椭圆的即可解决;(2)经过点的直线l分为斜率不存在和存在两种情况,分别去求弦,再去求其取值范围即可.【小问1详解】由题意得.记左焦点为,,则,,解得.由椭圆定义得:,则,所以椭圆C的方程为:.【小问2详解】①当直线l的斜率不存在时,.②当直线l的斜率存在时,设斜率为k,则l的方程为.联立椭圆与直线的方程(由于点在椭圆内,∴成立),且,,令,则,,,由得,综上所述,弦的取值范围为.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形20、(1);(2).【解析】(1)由题设知,设圆心,应用两点距离公式列方程求参数a,进而确定圆心坐标、半径,写出圆C的方程;(2)利用两点距离公式、切线的性质可得、,再应用三角形面积公式求三角形PMN的面积.【小问1详解】由已知,可设圆心,且,从而有,解得.所以圆心,半径.所以,圆C的方程为.【小问2详解】连接PC,CM,CN,MN,由(1)知:圆心,半径.所以.又PM,PN是圆C的切线,所以,,则,,所以,所以.21、(1),(2)证明见解析【解析】(1)利用累加法求通项公式,利用通项公式与前n项和公式的关系可求的通项公式;(2)求出并判断其范围,求出,利用裂项相消法求的前n项和即可证明.【小问1详解】由题可知,当n≥2时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论