山东聊城市文轩中学2024年数学九年级第一学期开学监测模拟试题【含答案】_第1页
山东聊城市文轩中学2024年数学九年级第一学期开学监测模拟试题【含答案】_第2页
山东聊城市文轩中学2024年数学九年级第一学期开学监测模拟试题【含答案】_第3页
山东聊城市文轩中学2024年数学九年级第一学期开学监测模拟试题【含答案】_第4页
山东聊城市文轩中学2024年数学九年级第一学期开学监测模拟试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页山东聊城市文轩中学2024年数学九年级第一学期开学监测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)函数与在同一平面直角坐标系中的大致图像是(

)A. B. C. D.2、(4分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AD=CD C.AB=BC D.AC=BD3、(4分)如图,以原点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为()A.5 B.-5 C.5-2 D.2-54、(4分)若关x的分式方程有增根,则m的值为()A.3 B.4 C.5 D.65、(4分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A、B,把正方形沿箭头方向推,使点D落在y轴的正半轴上的点处,则点C的对应点的坐标为()A. B. C. D.6、(4分)矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分 D.两组对角分别相等7、(4分)若是关于的一元二次方程,则的取值范围是()A. B. C. D.8、(4分)方程的解是()A. B. C. D.或二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在矩形中,,相交于点,平分交于点,若,则________.10、(4分)在,,,,中任意取一个数,取到无理数的概率是___________.11、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.12、(4分)一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.13、(4分)如图,平行四边形ABCD内的一点E到边AD,AB,BC的距离相等,则∠AEB的度数等于____.三、解答题(本大题共5个小题,共48分)14、(12分)如图1,在平面直角坐标系中点,,以为顶点在第一象限内作正方形.反比例函数、分别经过、两点(1)如图2,过、两点分别作、轴的平行线得矩形,现将点沿的图象向右运动,矩形随之平移;①试求当点落在的图象上时点的坐标_____________.②设平移后点的横坐标为,矩形的边与,的图象均无公共点,请直接写出的取值范围____________.15、(8分)小明在数学活动课上,将边长为和3的两个正方形放置在直线l上,如图a,他连接AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针针旋转一定的角度,如图b,试判断AD与CF还相等吗?说明理由.(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图c,请求出CF的长.16、(8分)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.17、(10分)甲、乙两人参加射击比赛,两人成绩如图所示.(1)填表:平均数方差中位数众数甲717乙9(2)只看平均数和方差,成绩更好的是.(填“甲”或“乙”)(3)仅就折线图上两人射击命中环数的走势看,更有潜力的是.(填“甲”或“乙”)18、(10分)某中学数学活动小组为了调查居民的用水情况,从某社区的户家庭中随机抽取了户家庭的月用水量,结果如下表所示:月用水量(吨)户数求这户家庭月用水量的平均数、众数和中位数;根据上述数据,试估计该社区的月用水量;由于我国水资源缺乏,许多城市常利用分段计费的方法引导人们节约用水,即规定每个家庭的月基本用水量为(吨),家庭月用水量不超过(吨)的部分按原价收费,超过(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合适?简述理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,是等边三角形内一点,将线段绕点顺时针旋转60°得到线段,连接.若,,,则四边形的面积为___________.20、(4分)小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入________小球时有水溢出.21、(4分)内角和等于外角和2倍的多边形是__________边形.22、(4分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=_____.23、(4分)已知x=2时,分式的值为零,则k=__________.二、解答题(本大题共3个小题,共30分)24、(8分)已知一次函数的图象经过点(-4,-9),(3,5)和(a,6),求a的值.25、(10分)如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.26、(12分)如图,中,,点从点出发沿射线移动,同时,点从点出发沿线段的延长线移动,已知点、的移动速度相同,与直线相交于点.(1)如图1,当点在线段上时,过点作的平行线交于点,连接、,求证:点是的中点;(2)如图2,过点作直线的垂线,垂足为,当点、在移动过程中,线段、、有何数量关系?请直接写出你的结论:.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.【详解】A、由双曲线在一、三象限,得m<1.由直线经过一、二、四象限得m<1.正确;

B、由双曲线在二、四象限,得m>1.由直线经过一、四、三象限得m>1.错误;

C、由双曲线在一、三象限,得m<1.由直线经过一、四、三象限得m>1.错误;

D、由双曲线在二、四象限,得m>1.由直线经过二、三、四象限得m<1.错误.

故选:A.此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于注意系数m的取值.2、D【解析】

根据菱形的判定方法结合各选项的条件逐一进行判断即可得.【详解】A、对角线互相垂直的平行四边形是菱形,故A选项不符合题意;B、有一组邻边相等的平行四边形是菱形,故B选项不符合题意;C、有一组邻边相等的平行四边形是菱形,故C选项不符合题意;D、对角线相等的平行四边形是矩形,故D选项符合题意,故选D.本题考查了菱形的判定,熟练掌握菱形的判定方法是解答本题的关键.3、B【解析】

根据勾股定理列式求出x2,再利用平方根的相反数定义解答.【详解】由图可知,x2=12+22=5,

则x1=−5,x2=5(舍去).

故选:B.考查了实数与数轴,主要是数轴上无理数的作法,需熟练掌握.4、D【解析】

分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.【详解】去分母得:2x-x+3=m,由分式方程有增根,得到x-3=0,即x=3,把x=3代入整式方程得:m=6,故选D.此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.5、A【解析】

由已知条件得到AD′=AD=2,AO=1,AB=2,根据勾股定理得到,于是得到结论.【详解】解:∵AD′=AD=2,

∴,

∵C′D′=2,C′D′∥AB,

∴C′(2,),

故选A.本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.6、B【解析】根据矩形与菱形的性质对各选项解析判断后利用排除法求解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.7、B【解析】

根据一元二次方程的定义即可求出答案.【详解】解:由题意可知:a﹣1≠0,∴a≠1,故选:B.本题考查一元二次方程的定义,解题的关键是正确理解一元二次方程的定义,本题属于基础题型.8、D【解析】

解:先移项,得x2-3x=0,再提公因式,得x(x-3)=0,从而得x=0或x=3故选D.本题考查因式分解法解一元二次方程.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

判断出△ABE是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB=30°,再判断出△ABO是等边三角形,根据等边三角形的性质求出OB=AB,再求出OB=BE,然后根据等腰三角形两底角相等求出∠BOE=75°,再根据∠AOE=∠AOB+∠BOE计算即可得解.【详解】解:∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠CAE=15°,∴∠ACE=∠AEB-∠CAE=45°-15°=30°,∴∠BAO=90°-30°=60°,∵矩形中OA=OB,∴△ABO是等边三角形,∴OB=AB,∠ABO=∠AOB=60°,∴OB=BE,∵∠OBE=∠ABC-∠ABO=90°-60°=30°,∴∠BOE=(180°-30°)=75°,∴∠AOE=∠AOB+∠BOE,=60°+75°,=135°.故答案为135°.本题考查了矩形的性质,等腰直角三角形的性质,等边三角形的判定与性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.10、【解析】

直接利用无理数的定义得出无理数的个数,再利用概率公式求出答案.【详解】解:∵在,,,,中无理数只有这1个数,∴任取一个数,取到无理数的概率是,故答案为:.此题主要考查了概率公式以及无理数,正确把握无理数的定义是解题关键.11、x=-1【解析】

观察图象,根据图象与x轴的交点解答即可.【详解】∵一次函数y=kx+1的图象与x轴的交点坐标是(-1,0),∴kx+1=0的解是x=-1.故答案为:x=-1.本题考查了一次函数与一元一次方程,解题的关键是根据交点坐标得出kx+1=0.12、1【解析】由0-4分钟的函数图象可知进水管的速度,根据4-12分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.解:进水管的速度为:20÷4=5(升/分),出水管的速度为:5-(30-20)÷(12-4)=3.75(升/分),∴关停进水管后,出水经过的时间为:30÷3.75=1分钟.故答案为1.13、90°【解析】

点E到边AD,AB,BC的距离相等,可知可知AE、BE分别为∠DAB、∠ABC的角平分线,然后根据角平分线的定义及三角形内角和求解即可.【详解】依题意,可知AE、BE分别为∠DAB、∠ABC的角平分线,又AD∥BC,所以,∠DAB+∠CBA=180°,所以,∠DAB+∠CBA=90°,即∠EAB+∠EBA=90°,所以,∠AEB=90°.故答案为:90°.本题考查了角平分线的判定,平行四边形的性质,三角形内角和等知识,证明AE、BE分别为∠DAB、∠ABC的角平分线是解答本题的关键.三、解答题(本大题共5个小题,共48分)14、【解析】

(1)如图1中,作DM⊥x轴于M.利用全等三角形的性质求出点D坐标,点C坐标,得到k1,k2的值,设平移后点D坐标为(m,),则E(m−2,),由题意:(m−2)•=3,解方程即可;(2)设平移后点D坐标为(a,),则C(a−2,+1),当点C在y=上时,(a−2)(+1)=6,解得a=1+或1−(舍弃),观察图象可得结论;【详解】解:(1)如图1中,作DM⊥x轴于M.∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵∠AOB=∠AMD=90°,∴∠OAB+∠OBA=90°,∠OAB+∠DAM=90°,∴∠ABO=∠DAM,∴△OAB≌△MDA(AAS),∴AM=OB=1,DM=OA=2,∴D(3,2),∵点D在上,∴k2=6,即,同法可得C(1,3),∵点C在上,∴k1=3,即,设平移后点D坐标为(m,),则E(m−2,),由题意:(m−2)•=3,解得m=4,∴D(4,);(2)设平移后点D坐标为(a,),则C(a−2,+1),当点C在y=上时,(a−2)(+1)=6,解得a=1+或1−(舍弃),观察图象可知:矩形的边CE与,的图象均无公共点,则a的取值范围为:4<a<1+.本题考查反比例函数综合题、正方形的性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.15、(2)详见解析(2)CF=【解析】

(2)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证.(2)与(2)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OGOE,再求出AG,然后利用勾股定理列式计算即可求出AD.【详解】解:(2)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,∵AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF.在△AOD和△COF中,∵AO=CO,∠AOD=∠COF,OD=OF,∴△AOD≌△COF(SAS).∴AD=CF.(2)与(2)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方形ODEF的边长为,∴OE=×=2.∴DG=OG=OE=×2=2.∴AG=AO+OG=3+2=4,在Rt△ADG中,,∴CF=AD=.16、(1)k=;(2)解析式为y=2x﹣2.【解析】试题分析:(1)根据L1⊥L2,则k1·k2=﹣1,可得出k的值即可;(2)根据直线互相垂直,则k1·k2=﹣1,可得出过点A直线的k等于2,得出所求的解析式即可.试题解析:解:(1)∵L1⊥L2,则k1•k2=﹣1,∴2k=﹣1,∴k=﹣;(2)∵过点A直线与y=x+2垂直,∴设过点A直线的直线解析式为y=2x+b,把A(2,2)代入得,b=﹣2,∴解析式为y=2x﹣2.17、(1)7,7,8,9;(2)甲;(3)乙【解析】

(1)根据图表,把乙的所有数据相加除以6,可求乙的平均数,由中位数,众数的定义即可求出相应的数据;(2)因为甲、乙平均数相同,从方差来看,方差越小成绩越稳定即可得;(3)从图表走势看,乙命中的环数越来越高,而且最高1环,所以乙最有潜力.【详解】(1)乙的数据分别为1,6,7,9,9,1.∴平均数为:(1+6+7+9+9+1)÷6=7,众数为9,中位数为:(7+9)÷2=8,甲的数据为:5,7,7,8,8,7,所以众数为7,故答案为:7,7,8,9;填表:平均数方差中位数众数甲7177乙7989(2)因为甲、乙的平均数都是7,所以方差越小越稳定,∴甲成绩更好,故答案为:甲;(3)从图表看出,乙中的环数越来越高,而且有最高1环,所以乙最有潜力,故答案为:乙.考查了平均数,中位数,众数的概念,以及方差的意义,由数据和图表会分析成绩的稳定性和更好的趋势.18、7;(吨);众数或中位数较合理,【解析】

(1)根据加权平均数计算平均数;众数即出现次数最多的数据,中位数应是第15个和第15个数据的平均数;(2)根据样本平均数估计总体平均数,从而计算该社区的月用水量;(3)因为这组数据中,极差较大,用平均数不太合理,所以选用众数或中位数,有代表性.【详解】这户家庭月用水量的平均数(吨)出现了次,出现的次数最多,则众数是,∵共有个数,∴中位数是第、个数的平均数,∴中位数是(吨),∵社区共户家庭,∴该社区的月用水量(吨);众数或中位数较合理.因为满足大多数家庭用水量,另外抽样的户家庭用水量存在较大数据影响了平均数.本题主要考查了众数、中位数、平均数的定义,解本题的要点在于掌握平均数的计算方法,理解众数和中位数的概念,能够正确找到众数和中位数,学会运用平均数、众数和中位数解决实际问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、6+4【解析】

连结PP′,如图,由等边三角形的性质得到∠BAC=60°,AB=AC,由旋转的性质得到CP=CP′=4,∠PCP′=60°,得到△PCP′为等边三角形,求得PP′=PC=4,根据全等三角形的性质得到AP′=PB=5,根据勾股定理的逆定理得到△APP′为直角三角形,∠APP′=90°,根据三角形的面积公式即可得到结论.【详解】连结PP′,如图,

∵△ABC为等边三角形,

∴∠BAC=60°,AB=AC,

∵线段CP绕点C顺时针旋转60°得到线段CP',

∴CP=CP′=4,∠PCP′=60°,

∴△PCP′为等边三角形,

∴PP′=PC=4,

∵∠ACP+∠BCP=60°,∠ACP+∠ACP′=60°,

∴∠BCP=∠ACP′,且AC=BC,CP=CP′

∴△BCP≌△ACP′(SAS),

∴AP′=PB=5,

在△APP′中,∵PP′2=42=16,AP2=32=9,AP′2=52=25,

∴PP′2+AP2=AP′2,

∴△APP′为直角三角形,∠APP′=90°,

∴S四边形APCP′=S△APP′+S△PCP′=AP×PP′+×PP′2=6+4,

故答案为:6+4.此题考查旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ为等边三角形是解题的关键.20、10【解析】(36-20)÷3=2(cm).设放入x小球有水溢出,由题意得2x+30>49,∴x>9.5,∴放入10小球有水溢出.21、六【解析】

设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:

180(n-2)=360×2,

解得:n=6,

故答案为:六.本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).22、-1【解析】

根据点A在正比例函数y=mx上,进而计算m的值,再根据y的值随x值的增大而减小,来确定m的值.【详解】解∵正比例函数y=mx的图象经过点A(m,4),∴4=m1.∴m=±1∵y的值随x值的增大而减小∴m=﹣1故答案为﹣1本题只要考查正比例函数的性质,关键在于根据函数的y的值随x值的增大而减小,来判断m的值.23、-6【解析】由题意得:6+k=0,解得:k=-6.故答案:-6.【方法点睛】本题目是一道考查分式值为0的问题,分式值为0:即当分子为0且分母不为0.从而列出方程,得解.二、解答题(本大题共3个小题,共30分)24、【解析】

设函数解析式为y=kx+b,将两点代入可求出k和b的值,进而可得出直线解析式.将点(a,6)代入可得关于a的方程,解出即可.【详解】设一次函数的解析式y=ax+b,∵图象过点(3,5)和(-4,-9),将这两点代入得:,解得:k=2,b=-1,∴函数解析式为:y=2x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论