![2024届山东省济宁市微山县第一中学高三一轮收官考试(二)数学试题_第1页](http://file4.renrendoc.com/view9/M02/38/3F/wKhkGWcgUuGATnIBAAH4uGkxeqg399.jpg)
![2024届山东省济宁市微山县第一中学高三一轮收官考试(二)数学试题_第2页](http://file4.renrendoc.com/view9/M02/38/3F/wKhkGWcgUuGATnIBAAH4uGkxeqg3992.jpg)
![2024届山东省济宁市微山县第一中学高三一轮收官考试(二)数学试题_第3页](http://file4.renrendoc.com/view9/M02/38/3F/wKhkGWcgUuGATnIBAAH4uGkxeqg3993.jpg)
![2024届山东省济宁市微山县第一中学高三一轮收官考试(二)数学试题_第4页](http://file4.renrendoc.com/view9/M02/38/3F/wKhkGWcgUuGATnIBAAH4uGkxeqg3994.jpg)
![2024届山东省济宁市微山县第一中学高三一轮收官考试(二)数学试题_第5页](http://file4.renrendoc.com/view9/M02/38/3F/wKhkGWcgUuGATnIBAAH4uGkxeqg3995.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济宁市微山县第一中学高三一轮收官考试(二)数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则()A. B. C. D.2.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.3.若满足,且目标函数的最大值为2,则的最小值为()A.8 B.4 C. D.64.已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,,则()A. B.C.6 D.5.陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A. B.C. D.6.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.集合,,则()A. B. C. D.8.设且,则下列不等式成立的是()A. B. C. D.9.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是()A. B. C. D.10.已知集合,,则()A. B.C.或 D.11.已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则()A. B. C. D.12.已知函数,关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是()A.(0,1)∪(1,e) B.C. D.(0,1)二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_____.14.设平面向量与的夹角为,且,,则的取值范围为______.15.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________.16.已知是等比数列,且,,则__________,的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的短轴长为,左右焦点分别为,,点是椭圆上位于第一象限的任一点,且当时,.(1)求椭圆的标准方程;(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.(ⅰ)求面积最大值;(ⅱ)证明:直线与斜率之积为定值.18.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.19.(12分)某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图所示两个二级过滤器采用并联安装,再与一级过滤器串联安装.其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80元.若客户在使用过程中单独购买滤芯则一级滤芯每个400元,二级滤芯每个200元.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图.表1:一级滤芯更换频数分布表一级滤芯更换的个数89频数6040图2:二级滤芯更换频数条形图以100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16的概率;(2)记表示该客户的净水系统在使用期内需要更换的二级滤芯总数,求的分布列及数学期望;(3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.20.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.21.(12分)已知函数,.(1)讨论的单调性;(2)若存在两个极值点,,证明:.22.(10分)已知点和椭圆.直线与椭圆交于不同的两点,.(1)当时,求的面积;(2)设直线与椭圆的另一个交点为,当为中点时,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由题知,又,代入计算可得.【详解】由题知,又.故选:D【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.2、D【解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.3、A【解析】
作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得..,当且仅当,即时,等号成立.的最小值为8.故选:.【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.4、D【解析】
先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【详解】由题意,则,,得,由定义知,故选:D.【点睛】此题考查向量的坐标运算,引入新定义,属于简单题目.5、C【解析】
画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,【详解】由题意可知几何体的直观图如图:上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:,故选:C【点睛】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.6、A【解析】
本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.7、A【解析】
解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【详解】由可得,所以,由可得,所以,所以,故选A.【点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.8、A【解析】项,由得到,则,故项正确;项,当时,该不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误.综上所述,故选.9、B【解析】
由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.10、D【解析】
首先求出集合,再根据补集的定义计算可得;【详解】解:∵,解得∴,∴.故选:D【点睛】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.11、A【解析】
由已知可得,根据二倍角公式即可求解.【详解】角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【点睛】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.12、D【解析】
原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【详解】由题意,a>2,令t,则f(x)=a⇔⇔⇔⇔.记g(t).当t<2时,g(t)=2ln(﹣t)(t)单调递减,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有两个不等于2的不等根.则⇔,记h(t)(t>2且t≠2),则h′(t).令φ(t),则φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,则h(t)在(2,2)上单调递增,在(2,+∞)上单调递减.由,可得,即a<2.∴实数a的取值范围是(2,2).故选:D.【点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先推导出函数的周期为,可得出,代值计算,即可求出实数的值.【详解】由于函数是定义在上的奇函数,则,又该函数的图象关于直线对称,则,所以,,则,所以,函数是周期为的周期函数,所以,解得.故答案为:.【点睛】本题考查利用函数的对称性计算函数值,解题的关键就是结合函数的奇偶性与对称轴推导出函数的周期,考查推理能力与计算能力,属于中等题.14、【解析】
根据已知条件计算出,结合得出,利用基本不等式可得出的取值范围,利用平面向量的数量积公式可求得的取值范围,进而可得出的取值范围.【详解】,,,由得,,由基本不等式可得,,,,,因此,的取值范围为.故答案为:.【点睛】本题考查利用向量的模求解平面向量夹角的取值范围,考查计算能力,属于中等题.15、【解析】试题分析:根据题意,记白球为A,红球为B,黄球为,则一次取出2只球,基本事件为、、、、、共6种,其中2只球的颜色不同的是、、、、共5种;所以所求的概率是.考点:古典概型概率16、5【解析】,即的最大值为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)(ⅰ);(ⅱ)证明见解析.【解析】
(1)由,解方程组即可得到答案;(2)(ⅰ)设,,则,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)设直线斜率为,直线方程为,联立椭圆方程得到的坐标,再利用两点的斜率公式计算即可.【详解】(1)设,由,得.将代入,得,即,由,解得,所以椭圆的标准方程为.(2)设,,则,(ⅰ)易知为的中位线,所以,所以,又满足,所以,得,故,当且仅当,即,时取等号,所以面积最大值为.(ⅱ)记直线斜率为,则直线斜率为,所以直线方程为.由,得,由韦达定理得,所以,代入直线方程,得,于是,直线斜率,所以直线与斜率之积为定值.【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆中的最值及定值问题,在解椭圆与直线的位置关系的答题时,一般会用到根与系数的关系,考查学生的数学运算求解能力,是一道有一定难度的题.18、(1)见解析,40元(2)6000元【解析】
(1)甲、乙两人所付的健身费用都是0元、20元、40元三种情况,因此甲、乙两人所付的健身费用之和共有9种情况,分情况计算即可(2)根据(1)结果求均值.【详解】解:(1)由题设知可能取值为0,20,40,60,80,则;;;;.故的分布列为:020406080所以数学期望(元)(2)此次促销活动后健身馆每天的营业额预计为:(元)【点睛】考查离散型随机变量的分布列及其期望的求法,中档题.19、(1)0.024;(2)分布列见解析,;(3)【解析】
(1)由题意可知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16,则该套净水系统中一个一级过滤器需要更换8个滤芯,两个二级过滤器均需要更换4个滤芯,而由一级滤芯更换频数分布表和二级滤芯更换频数条形图可知,一级过滤器需要更换8个滤芯的概率为0.6,二级过滤器需要更换4个滤芯的概率为0.2,再由乘法原理可求出概率;(2)由二级滤芯更换频数条形图可知,一个二级过滤器需要更换滤芯的个数为4,5,6的概率分别为0.2,0.4,0.4,而的可能取值为8,9,10,11,12,然后求出概率,可得到的分布列及数学期望;(3)由,且,可知若,则,或若,则,再分别计算两种情况下的所需总费用的期望值比较大小即可.【详解】(1)由题意知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16,则该套净水系统中一个一级过滤器需要更换8个滤芯,两个二级过滤器均需要更换4个滤芯,设“一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16”为事件,因为一个一级过滤器需要更换8个滤芯的概率为0.6,二级过滤器需要更换4个滤芯的概率为0.2,所以.(2)由柱状图知,一个二级过滤器需要更换滤芯的个数为4,5,6的概率分别为0.2,0.4,0.4,由题意的可能取值为8,9,10,11,12,从而,,.所以的分布列为891011120.040.160.320.320.16(个).或用分数表示也可以为89101112(个).(3)解法一:记表示该客户的净水系统在使用期内购买各级滤芯所需总费用(单位:元)因为,且,1°若,则,(元);2°若,则,(元).因为,故选择方案:.解法二:记分别表示该客户的净水系统在使用期内购买一级滤芯和二级滤芯所需费用(单位:元)1°若,则,的分布列为128016800.60.488010800.840.16该客户的净水系统在使用期内购买的各级滤芯所需总费用为(元);2°若,则,的分布列为800100012000.520.320.16(元).因为所以选择方案:.【点睛】此题考查离散型随机变量的分布列、数学期望的求法及应用,考查古典概型,考查运算求解能力,属于中档题.20、(1)60;25(2)见解析,2.1(3)可以认为该校学生的体重是正常的.见解析【解析】
(1)根据频率分布直方图可求出平均值和样本方差;(2)由题意知服从二项分布,分别求出,,,,进而可求出分布列以及数学期望;(3)由第一问可知服从正态分布,继而可求出的值,从而可判断.【详解】解:(1)(2)由已知可得从全校学生中随机抽取1人,体重在的概率为0.7.随机拍取3人,相当于3次独立重复实验,随机交量服从二项分布,则,,,,所以的分布列为:01
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年01月1月广东深圳市公办中小学公开招聘事业单位工作人员178人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2024年12月贵州腾虹食品销售有限责任公司公开招聘6人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 二零二五年度金融机构担保合同模板:规范担保业务操作5篇
- 《高压电气设备选择》课件
- (高清版)DB37∕T 2990-2017 巢蜜生产技术规范
- 《财务报表审计目标》课件
- 《数据分析》课件
- 《收集资料的方法》课件
- 2025至2031年中国幼鳗增食剂行业投资前景及策略咨询研究报告
- 《阑尾炎、肠梗阻读》课件
- 【公开课】同一直线上二力的合成+课件+2024-2025学年+人教版(2024)初中物理八年级下册+
- 急救药品课件教学课件
- 郑州市地图含区县可编辑可填充动画演示矢量分层地图课件模板
- 2024年湖南生物机电职业技术学院单招职业技能测试题库及答案解析
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 2024年公安部直属事业单位招聘笔试参考题库附带答案详解
- 《中华民族共同体概论》考试复习题库(含答案)
- 中国石油大学(华东)-朱超-答辩通用PPT模板
- 隧道二衬承包合同参考
- 商业动线设计(修改版)
- 空气能热泵系统
评论
0/150
提交评论