版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页辽宁省铁岭市昌图县2024年数学九上开学质量跟踪监视模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠22、(4分)直角三角形两条直角边分别是和,则斜边上的中线等于()A. B.13 C.6 D.3、(4分)如图,∠1=∠2,DE∥AC,则图中的相似三角形有()A.2对 B.3对 C.4对 D.5对4、(4分)如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为()A.5 B.10 C.6 D.85、(4分)从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们五次数学测验成绩进行统计,得出他们的平均分均为85分,且,,,.根据统计结果,最适合参加竞赛的两位同学是()A.甲、乙 B.丙、丁 C.甲、丁 D.乙、丙6、(4分)将点向左平移个单位长度,在向上平移个单位长度得到点,则点的坐标是()A. B. C. D.7、(4分)如果一个多边形的内角和是外角和的3倍,那么这个多边形是()A.四边形 B.六边形 C.八边形 D.十边形8、(4分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.1.5,2,2.5 D.1,,3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)数据、、、、的方差是____.10、(4分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF,CF,则下列结论中一定成立的是______.(把所有正确结论的序号都填在横线上)(1)∠DFC+∠FEC=90°;(2)∠B=∠AEF;(3)CF=EF;(4)11、(4分)反比例函数的图象过点P(2,6),那么k的值是.12、(4分)如果关于x的不等式组的解集是,那么m=___13、(4分)若关于x的一元二次方程(k﹣1)x2+3x﹣1=0有实数根,则k的取值范围是_____.三、解答题(本大题共5个小题,共48分)14、(12分)已知:一次函数的图像经过点A(-1,2)和点B(0,4).(1)求这个一次函数的表达式;(2)请你画出平面直角坐标系,并作出本题中的一次函数的图像.15、(8分)(1)因式分解:x2y﹣2xy2+y3(2)解不等式组:16、(8分)如图,在Rt△BAC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=30°,求∠B的度数.17、(10分)解分式方程:(1)(2)18、(10分)如图,点、、、在一条直线上,,,,交于.求证:与互相平分,B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知不等式组的解集是,则的值是的___.20、(4分)分解因式:9a﹣a3=_____.21、(4分)关于x的一元二次方程(x+1)(x+7)=-5的根为_______________.22、(4分)如图,经过平移后得到,下列说法错误的是()A. B.C. D.23、(4分)化简的结果为_____.二、解答题(本大题共3个小题,共30分)24、(8分)已知是不等式的一个负整数解,请求出代数式的值.25、(10分)如图,为修通铁路凿通隧道,量出,,,,若每天凿隧道,问几天才能把隧道凿通?26、(12分)如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】试题分析:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,即a-2≥0,则a≥2.考点:二次根式的性质2、A【解析】
根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线等于.故选:A.此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.3、C【解析】
由∠1=∠2,DE∥AC,利用有两角对应相等的三角形相似解答即可.【详解】∵DE∥AC,∴△BED∽△BAC,∠EDA=∠DAC,∵∠1=∠2,∴△ADE∽△CAD,∵DE∥AC,∴∠2=∠EDB,∵∠1=∠2,∴∠1=∠EDB,∵∠B=∠B,∴△BDE∽△BAD,∴△ABD∽△CBA,故选:C.本题考查了相似三角形的判定,注意掌握有两角对应相等的三角形相似定理的应用,注意数形结合思想的应用.4、A【解析】试题分析:根据菱形的性质:菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可知每个直角三角形的直角边,根据勾股定理可将菱形的边长求出.解:设AC与BD相交于点O,由菱形的性质知:AC⊥BD,OA=AC=3,OB=BD=4在Rt△OAB中,AB===1所以菱形的边长为1.故选A.考点:菱形的性质.5、C【解析】
方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,波动越小.选择方差较小的两位.【详解】解:从四个方差看,甲,丁的方差在四个同学中是较小的,方差小成绩发挥稳定,所以应选他们两人去参加比赛.故选:C.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、D【解析】
根据:横坐标,右移加,左移减;纵坐标,上移加,下移减的规律即可解决问题.【详解】将点A(2,−1)向左平移3个单位长度,再向上平移4个单位长度得到点B(−1,3),故选:D.本题考查坐标平移,记住坐标平移的规律是解决问题的关键.7、C【解析】设这个多边形是n边形,根据题意得:(n–2)•110°=3×360°,解得:n=1.故选C.8、C【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、22+32=13≠42,不可以构成直角三角形,故B选项错误;C、1.52+22=6.25=2.52,可以构成直角三角形,故C选项正确;D、,不可以构成直角三角形,故D选项错误.故选:C.本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】分析:先求平均数,根据方差公式求解即可.详解:数据1,2,3,3,6的平均数∴数据1,2,3,3,6的方差:故答案为:点睛:考查方差的计算,记忆方差公式是解题的关键.10、(1)(3)【解析】
分别利用平行四边形的性质以及全等三角形的判定得出△AEF≌△DMF,得出角、线段之间关系,得出(1)(3)成立,(2)不成立;再由梯形面积和平行四边形面积关系进而得出(4)不成立.【详解】解:∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵∠B=∠ADC>∠M,∴∠B>∠AEF,(2)不成立;∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=EF,(3)成立;∴∠FEC=∠FCE,∵∠DCF+∠FEC=90°,∴∠DFC+∠FEC=90°,(1)成立;∵四边形ADCE的面积=(AE+CD)×CE,F是AD的中点,∴S△EFC=S四边形ADCE,∵S△BDC=S平行四边形ABCD=CD×CE,∴S△EFC≠S△BDC,(4)不成立;故答案为:(1)(3).此题主要考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识,证出△AEF≌△DMF是解题关键.11、1.【解析】试题分析:∵反比例函数的图象过点P(2,6),∴k=2×6=1,故答案为1.考点:反比例函数图象上点的坐标特征.12、-3【解析】
根据“同大取大”的法则列出关于m的不等式,求出m的取值范围即可.【详解】解:∵m+2>m-1又∵不等式组的解集是x>-1,∴m+2=-1,∴m=-3,故答案为:-3.本题考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则解答即可.13、且【解析】试题解析:由题意知,∵方程有实数根,∴且故答案为且三、解答题(本大题共5个小题,共48分)14、(1);(2)见解析【解析】
(1)设一次函数解析式为,将A,B坐标代入求出k,b的值,即可得解析式;(2)建立坐标系,找到A,B两点的位置,再连线即可.【详解】(1)设一次函数解析式为,将A(-1,2)和点B(0,4)代入得:解得,∴一次函数解析式为(2)如图所示,本题考查求一次函数解析式与作图,熟练掌握待定系数法求函数解析式是解题的关键.15、(1)y(x﹣y)2;(2)﹣3<x<2【解析】
(1)由题意对原式提取公因式,再利用完全平方公式分解即可;(2)根据题意分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)原式=y(x2﹣2xy+y2)=y(x﹣y)2;(2),由①得:x<2,由②得:x>﹣3,则不等式组的解集为:﹣3<x<2.本题考查因式分解和解不等式组,熟练掌握提公因式法与公式法的综合运用以及解不等式组的方法是解答本题的关键.16、75°.【解析】试题分析:根据旋转的性质可得△ABC≌△AB′C′,根据全等三角形的性质可得AC=AC′,∠B=∠AB′C′,则△ACC′是等腰直角三角形,然后根据三角形的外角的性质求得∠AB′C′即可.解:由旋转的性质可得:△ABC≌△AB′C′,点B′在AC上,∴AC=AC′,∠B=∠AB′C′.又∵∠BAC=∠CAC′=90°,∴∠ACC′=∠AC′C=45°.∴∠AB′C′=∠ACC′+∠CC′B′=45°+30°=75°,∴∠B=∠AB′C′=75°.考点:旋转的性质.17、(1);(2)无解【解析】
(1)最简公分母为x(x+6).方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.结果需检验(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)解:方程两边同乘以得解这个方程得,检验:当时,所以原方程的解是(2)解:方程两边同乘以得解这个方程得,检验:当时,所以是增根,分式方程无解此题考查解分式方程,解题关键在于掌握运算法则18、详见解析【解析】
连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB//DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.【详解】证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.本题主要考查了平行四边形的判定和性质,解决问题的关键是依据全等三角形的对应边相等得出结论.一、填空题(本大题共5个小题,每小题4分,共20分)19、-2【解析】
先求出两个不等式的解集,再求其公共解,然后根据不等式组的解集列出求出a、b的值,再代入代数式进行计算即可得解.【详解】,由①得,,由②得,,所以,不等式组的解集是,不等式组的解集是,,,解得,,所以,.故答案为:.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).20、a(3+a)(3﹣a).【解析】
先提公因式,再用平方差公式,可得答案.【详解】原式=a(9﹣a2)=a(3+a)(3﹣a).故答案为:a(3+a)(3﹣a).本题考查了因式分解,利用提公因式与平方差公式是解题的关键.21、【解析】
整理成一般式后,利用因式分解法求解可得.【详解】解:整理得:x2+8x+12=0,
(x+2)(x+1)=0,
x+2=0,x+1=0,
x1=-2,x2=-1.故答案为:.本题考查因式分解法解一元二次方程,能把一元二次方程转化成一元一次方程是解题的关键.22、D【解析】
根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.【详解】A、AB∥DE,正确;B、,正确;C、AD=BE,正确;D、,故错误,故选D.本题主要考查了平移的性质,是基础题,熟记性质是解题的关键.23、x【解析】
先把两分数化为同分母的分数,再把分母不变,分子相加减即可.【详解】,故答案为x.二、解答题(本大题共3个小题,共30分)24、,原式【解析】
先根据分式的运算法则进行化简,再求出不等式的负整数解,最后代入求出即可.【详解】∵求解不等式,解得又当,时分式无意义∴∴原式本题考查了分式的化简求值,解一元一次不等式,不等式的整数解等知识点,能求出符合题意的m值是解此题的关键.25、10天才能把隧道凿通【解析】
由题意可得∠C为90°,在直角△ABC中,已知AB,BC根据勾股定理即可求AC,即可得出需要的天数.【详解】解:∵,,∴.∵在中,,,∴.∴需要天数为(天).答:10天才能把隧道凿通.故答案为:10天才能把隧道凿通.本题考查勾股定理在实际生活中的应用,解题的关键是正确的计算AC的长度.26、(1)G(0,4-);(2);(3).【解析】
1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在Rt△AGF中,利用勾股定理求出,那么OG=OA-AG=4-,于是G(0,4-);(2)先在Rt△AGF中,由,得出∠AFG=60°,再由折叠的性质得出∠GFE=∠BFE=60°,解Rt△BFE,求出BE=BFtan60°=2,那么CE=4-2,E(3,4-2).设直线EF的表达式为y=kx+b,将E(3,4-2),F(1,4)代入,利用待定系数法即可求出直线EF的解析.(3)因为M、N均为动点,只有F、G已经确定,所以可从此入手,结合图形,按照FG为一边,N点在x轴上;FG为一边,N点在y轴上;FG为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M点的坐标.【详解】解:(1)∵F(1,4),B(3,4),∴AF=1,BF=2,由折叠的性质得:GF=BF=2,在Rt△AGF中,由勾股定理得,∵B(3,4),∴OA=4,∴OG=4-,∴G(0,4-);(2)在Rt△AGF中,∵,∴∠AFG=60°,由折叠的性质得知:∠GFE=∠BFE=60°,在Rt△BFE中,∵BE=BFtan60°=2,.CE=4-2,.E(3,4-2).设直线EF的表达式为y=kx+b,∵E(3,4-2),F(1,4),∴解得∴;(3)若以M、N、F、G为顶点的四边形是平行四边形,则分如下四种情况:①FG为平行四边形的一边,N点在x轴上,GFMN为平行四边形,如图1所示.过点G作EF的平行线,交x轴于点N1,再过点N:作GF的平行线,交EF于点M,得平行四边形GF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行抵押借款合同范本2篇
- 门市出租合同书范本
- 建筑包工包料合同
- 建筑装饰装修工程施工合同标准版可打印
- 农村房屋买卖合同书
- 关于手车买卖合同
- 2024年二手房交易过程中的居间服务合同3篇
- 二零二四年度煤炭中长期供应与购销合同
- 2024年度光伏发电设备安装工程分包合同2篇
- 铁矿承包开采合同协议书范本
- 项目九-宋代造船技术的进展与(共37张PPT)
- Java程序设计全套课件完整版
- 中国文学常识课件
- 计算机图形学历年期末题大三上必考知识点哦
- 某县大河镇生猪交易市场建设项目可行性研究报告
- 华北理工大学中药学课程教学大纲(48学时-耿增岩)
- 手术讲解模板臀位外倒转术
- 人体衰老和抗衰老研究讲座课件
- 医院感染管理组织架构图
- (完整版)国家会计领军人才题型及经验分享
- 高中地理 必修二 世界人口的分布 人口分布(第一课时) 课件
评论
0/150
提交评论