




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吴忠高级中学高二上数学期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.22.将一枚骰子连续抛两次,得到正面朝上的点数分别为、,记事件A为“为偶数”,事件B为“”,则的值为()A. B.C. D.3.已知点是抛物线上的动点,过点作圆的切线,切点为,则的最小值为()A. B.C. D.4.已知三棱锥的各顶点都在同一球面上,且平面,若该棱锥的体积为,,,,则此球的表面积等于()A. B.C. D.5.如图,已知最底层正方体的棱长为a,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,依此方法一直继续下去,则所有这些正方体的体积之和将趋近于()A. B.C. D.6.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.37.双曲线的光学性质如下:如图1,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线灯”的轴截面是双曲线一部分,如图2,其方程为,分别为其左、右焦点,若从右焦点发出的光线经双曲线上的点A和点B反射后(,A,B在同一直线上),满足,则该双曲线的离心率的平方为()A. B.C. D.8.在中,,满足条件的三角形的个数为()A.0 B.1C.2 D.无数多9.已知数列满足,,则()A. B.C.1 D.210.已知等差数列的前项和为,,,,则的值为()A. B.C. D.11.已知双曲线的离心率为2,且与椭圆有相同的焦点,则该双曲线的渐近线方程为()A. B.C. D.12.在等差数列{an}中,a1=1,,则a7=()A.13 B.14C.15 D.16二、填空题:本题共4小题,每小题5分,共20分。13.在等比数列中,,则______14.设抛物线的准线方程为__________.15.曲线在处的切线与坐标轴围成的三角形面积为___________.16.如图所示四棱锥,底面ABCD为直角梯形,,,,,是底面ABCD内一点(含边界),平面MBD,则点O轨迹的长度为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求单调增区间;(2)当时,恒成立,求实数的取值范围.18.(12分)已知函数()(1)讨论函数的单调区间;(2)若有两个极值点,(),且不等式恒成立,求实数m的取值范围19.(12分)在二项式的展开式中;(1)若,求常数项;(2)若第4项的系数与第7项的系数比为,求:①二项展开式中的各项的二项式系数之和;②二项展开式中各项的系数之和20.(12分)已知抛物线C:的焦点为F,为抛物线C上一点,且(1)求抛物线C的方程:(2)若以点为圆心,为半径圆与C的准线交于A,B两点,过A,B分别作准线的垂线交抛物线C于D,E两点,若,证明直线DE过定点21.(12分)如图所示在多面体中,平面,四边形是正方形,,,,.(1)求证:直线平面;(2)求平面与平面夹角的余弦值.22.(10分)已知椭圆C:,右焦点为F(,0),且离心率为(1)求椭圆C的标准方程;(2)设M,N是椭圆C上不同的两点,且直线MN与圆O:相切,若T为弦MN的中点,求|OT||MN|的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.2、B【解析】利用条件概率的公式求解即可.【详解】根据题意可知,若事件为“为偶数”发生,则、两个数均为奇数或均为偶数,其中基本事件数为,,,,,,,,,,,,,,,,,,一共个基本事件,∴,而A、同时发生,基本事件有当一共有9个基本事件,∴,则在事件A发生的情况下,发生的概率为,故选:3、C【解析】分析可知圆的圆心为抛物线的焦点,可求出的最小值,再利用勾股定理可求得的最小值.【详解】设点的坐标为,有,由圆的圆心坐标为,是抛物线的焦点坐标,有,由圆的几何性质可得,又由,可得的最小值为故选:C.4、D【解析】由条件确定三棱锥的外接球的球心位置及球的半径,再利用球的表面积公式求外接球的表面积.【详解】由已知,,,可得三棱锥的底面是直角三角形,,由平面可得就是三棱锥外接球的直径,,,即,则,故三棱锥外接球的半径为,所以三棱锥外接球的表面积为故选:D.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.5、D【解析】由已知可判断出所有这些正方体的体积构成首项为,公比为的等比数列,然后求和可得答案.【详解】最底层上面第一个正方体的棱长为,其体积为,上面第二个正方体的棱长为,其体积为,上面第三个正方体的棱长为,其体积为,所有这些正方体的体积构成首项为,公比为的等比数列,其前项和为,当,,所以所有这些正方体的体积之和将趋近于.故选:D.6、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【点睛】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.7、D【解析】设,根据题意可得,由双曲线定义得、,进而求出(用表示),然后在中,应用勾股定理得出关系,求得离心率【详解】易知共线,共线,如图,设,则.因为,所以,则,则,又因为,所以,则,在中,,即,所以.故选:D8、B【解析】利用正弦定理得到,进而或,由,得,即可求解【详解】由正弦定理得,,或,,,故满足条件的有且只有一个.故选:B9、C【解析】结合递推关系式依次求得的值.【详解】因为,,所以,得由,得.故选:C10、A【解析】由可求得,利用可构造方程求得.【详解】,,,,,解得:.故选:A.11、B【解析】求出焦点,则可得出,即可求出渐近线方程.【详解】由椭圆可得焦点为,则设双曲线方程为,可得,则离心率,解得,则,所以渐近线方程为.故选:B.12、A【解析】利用等差数列的基本量,即可求解.【详解】设等差数列的公差为,,解得:,则.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用等比数列性质和通项公式可求得,根据可求得结果.【详解】,又,,.故答案为:.14、【解析】由题意结合抛物线的标准方程确定其准线方程即可.【详解】由抛物线方程可得,则,故准线方程为.故答案为【点睛】本题主要考查由抛物线方程确定其准线方法,属于基础题.15、【解析】先求导数,得出切线斜率,写出切线方程,然后可求三角形的面积.【详解】,当时,,所以切线方程为,即;令可得,令可得;所以切线与坐标轴围成的三角形面积为.故答案为:.16、【解析】绘出如图所示的辅助线,然后通过平面平面得出点轨迹为线段,最后通过求出、的长度即可得出结果.【详解】如图,延长到点,使且,连接,取上点,使得,作,交于点,交于点,连接,因为,所以,因为,又,所以,,因为,,,所以平面平面,因为平面,面,所以点轨迹为线段,因为,,所以,因为,,,所以,因为底面为直角梯形,所以,,,,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调增区间为;(2).【解析】(1)求导由求解.(2)将时,恒成立,转化为时,恒成立,令用导数法由求解即可.【详解】(1)因为函数所以令,解得,所以单调增区间为.(2)因为时,恒成立,所以时,恒成立,令则令因为时,恒成立,所以在单调递减.当时,在单调递减,故符合要求;当时,单调递减,故存在使得则当时单调递增,不符合要求;当时,单调递减,故存在使得则当时单调递增,不符合要求.综上.【点睛】方法点睛:恒(能)成立问题的解法:若在区间D上有最值,则(1)恒成立:;;(2)能成立:;.若能分离常数,即将问题转化为:(或),则(1)恒成立:;;(2)能成立:;;18、(1)时,在递增,时,在递减,在递增(2)【解析】(1)求出函数导数,分和两种情况讨论可得单调性;(2)根据导数可得有两个极值点等价于有两不等实根,则可得出,进而得出,可得恒成立,等价于,构造函数求出最小值即可.【小问1详解】的定义域是,,①时,,则,在递增;②时,令,解得,令,解得,故在递减,在递增.综上,时,在递增时,在递减,在递增【小问2详解】,定义域是,有2个极值点,,即,则有2个不相等实数根,,∴,,解得,且,,从而,由不等式恒成立,得恒成立,令,当时,恒成立,故函数在上单调递减,∴,故实数m的取值范围是【点睛】关键点睛:本题考查利用导数解决不等式的恒成立问题,解题的关键是将有两个极值点等价于有两不等实根,以此求出,再将不等式恒成立转化为求的最小值.19、(1)60(2)①1024;②1【解析】(1)根据二项式定理求解(2)根据二项式定理与条件求解,二项式系数之和为,系数和可赋值【小问1详解】若,则,(,…,9)令∴∴常数项为.【小问2详解】,(,…,),解得①②令,得系数和为20、(1);(2)证明见解析.【解析】(1)解方程和即得解;(2)设,,将与圆P方程联立得到韦达定理,再写出直线的方程即得解.【小问1详解】解:因为为抛物线C上一点,且,所以到抛物线C的准线的距离为2则,,则,所以,故抛物线C的方程为【小问2详解】证明:由(1)知,则圆P的方程为设,,将与圆P的方程联立,可得,则,当时,,不妨令,则,此时;当时,直线DE的斜率为,则直线DE的方程为,即,即,令且,得,直线过点;综上,直线DE过定点21、(1)证明见解析;(2).【解析】(1)以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,利用空间向量法可证明出直线平面;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】证明:因为平面,,以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,则、、、、、,所以,,,设平面的法向量为,依题意有,即,令,可得,,则,平面,因此,平面.【小问2详解】解:由题,,设平面的法向量为,依题意有,即,取,可得,,因此,平面与平面的夹角余弦值为.22、(1);(2)[,3].【解析】(1)由题可得,即求;(2)当直线的斜率不存在或为0,易求,当直线MN斜率存在且不为0时,设直线MN的方程为:,利用直线与圆相切可得,再联立椭圆方程并应用韦达定理求得,然后利用基本不等式即得.【小问1详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购管理的内容与目标
- 编制说明-番茄日光温室全产业链管理技术规范
- 高考数学复习讲义:平面向量
- 乙肝患者护理教学要点
- 《活法1》名著导读好书
- 细胞中的能量通货
- 橡胶厂消防课件
- 护理侵权责任法解析
- 心理个案护理
- 排气护理备课
- 浙江省衢州市(2024年-2025年小学三年级语文)人教版期末考试(下学期)试卷(含答案)
- 第一单元名著导读《艾青诗选》作业设计-部编版语文九年级上册
- 《银行业从业人员职业操守和行为准则》课件
- 人工气候室投标书
- 云南省文山州2023-2024学年八年级下学期期末语文试卷
- 2024年第九届“鹏程杯”五年级语文邀请赛试卷
- 2024年国家开放大学《思想道德与法治》形考大作业参考答案
- (高清版)JTG D50-2017 公路沥青路面设计规范
- 基于X-13A-S季节调整方法的铁路客运量预测分析
- 广东省汕头市2022-2023学年六年级下学期语文期末考试试卷(含答案)
- 上海市初中生命科学学业会考总复习
评论
0/150
提交评论