![2025届山西省晋中市数学高二上期末联考试题含解析_第1页](http://file4.renrendoc.com/view9/M02/19/11/wKhkGWcfx12AU0uQAAHTztxHOQA938.jpg)
![2025届山西省晋中市数学高二上期末联考试题含解析_第2页](http://file4.renrendoc.com/view9/M02/19/11/wKhkGWcfx12AU0uQAAHTztxHOQA9382.jpg)
![2025届山西省晋中市数学高二上期末联考试题含解析_第3页](http://file4.renrendoc.com/view9/M02/19/11/wKhkGWcfx12AU0uQAAHTztxHOQA9383.jpg)
![2025届山西省晋中市数学高二上期末联考试题含解析_第4页](http://file4.renrendoc.com/view9/M02/19/11/wKhkGWcfx12AU0uQAAHTztxHOQA9384.jpg)
![2025届山西省晋中市数学高二上期末联考试题含解析_第5页](http://file4.renrendoc.com/view9/M02/19/11/wKhkGWcfx12AU0uQAAHTztxHOQA9385.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省晋中市数学高二上期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数,则曲线在点处的切线方程为()A. B.C. D.2.在四棱锥中,四边形为菱形,平面,是中点,下列叙述正确的是()A.平面 B.平面C.平面平面 D.平面平面3.在棱长为1的正四面体中,点满足,点满足,当和的长度都为最短时,的值是()A. B.C. D.4.等比数列的各项均为正数,且,则()A.5 B.10C.4 D.5.已知双曲线的左、右焦点分别为,,点在双曲线的右支上,且,则双曲线离心率的取值范围是()A. B.C. D.6.如图,某圆锥轴截面是等边三角形,点是底面圆周上的一点,且,点是的中点,则异面直线与所成角的余弦值是()A. B.C. D.7.如图,某绿色蔬菜种植基地在A处,要把此处生产的蔬菜沿道路或运送到形状为四边形区域的农贸市场中去,现要求在农贸市场中确定一条界线,使位于界线一侧的点沿道路运送蔬菜较近,而另一侧的点沿道路运送蔬菜较近,则该界线所在曲线为()A.圆 B.椭圆C.双曲线 D.抛物线8.魏晋时期数学家刘徽首创割圆术,他在《九章算术》方田章圆田术中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是注述中所用的割圆术是一种无限与有限的转化过程,比如在正数中的“”代表无限次重复,设,则可以利用方程求得,类似地可得到正数()A.2 B.3C. D.9.已知,为双曲线的两个焦点,点P在双曲线上且满足,那么点P到x轴的距离为()A. B.C. D.10.有关椭圆叙述错误的是()A.长轴长等于4 B.短轴长等于4C.离心率为 D.的取值范围是11.已知抛物线的焦点为,点为抛物线上一点,点,则的最小值为()A. B.2C. D.312.已知直线:与双曲线的两条渐近线分别相交于A、B两点,若C为直线与y轴的交点,且,则k等于()A.4 B.6C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点在直线上,则的最小值为___________.14.函数仅有一个零点,则实数的取值范围是_________.15.已知直线,抛物线上一动点到直线l的距离为d,则的最小值是______16.如图将自然数,…按到箭头所指方向排列,并依次在,…等处的位置拐弯.如图作为第一次拐弯,则第33次拐弯的数是___________,超过2021的第一个拐弯数是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三角形内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.18.(12分)等差数列前n项和为,且(1)求通项公式;(2)记,求数列的前n项和19.(12分)在平面直角坐标系中,已知直线(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的直角坐标为,直线与曲线的交点为,求的值.20.(12分)已知函数.若函数有两个极值点,求实数的取值范围.21.(12分)已知椭圆的焦点为,且该椭圆过点(1)求椭圆的标准方程;(2)若椭圆上的点满足,求的值22.(10分)双曲线,离心率,虚轴长为2(1)求双曲线的标准方程;(2)经过点的直线与双曲线相交于两点,且为的中点,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对函数求导,利用导数的几何意义求出切线斜率即可计算作答.【详解】依题意,,即有,而,则过点,斜率为1的直线方程为:,所以曲线在点处切线方程为.故选:D2、D【解析】利用反证法可判断A选项;利用面面垂直的性质可判断BC选项;利用面面垂直的判定可判断D选项.【详解】对于A选项,因为四边形为菱形,则,平面,平面,平面,若平面,因为,则平面平面,事实上,平面与平面相交,假设不成立,A错;对于B选项,过点在平面内作,垂足为点,平面,平面,则,,,平面,而过作平面的垂线,有且只有一条,故与平面不垂直,B错;对于C选项,过点在平面内作,垂足为点,因为平面,平面,则,,,则平面,若平面平面,过点在平面内作,垂足为点,因为平面平面,平面平面,平面,平面,而过点作平面的垂线,有且只有一条,即、重合,所以,平面平面,所以,,但四边形为菱形,、不一定垂直,C错;对于D选项,因为四边形为菱形,则,平面,平面,,,平面,因为平面,因此,平面平面平面,D对.故选:D.3、A【解析】根据给定条件确定点M,N的位置,再借助空间向量数量积计算作答.【详解】因,则,即,而,则共面,点M在平面内,又,即,于是得点N在直线上,棱长为1的正四面体中,当长最短时,点M是点A在平面上的射影,即正的中心,因此,,当长最短时,点N是点D在直线AC上的射影,即正边AC的中点,,而,,所以.故选:A4、A【解析】利用等比数列的性质及对数的运算性质求解.【详解】由题有,则=5.故选:A5、C【解析】根据双曲线的定义求得,利用可得离心率范围【详解】因为,又,所以,,又,即,,所以离心率故选:C6、C【解析】建立空间直角坐标系,分别得到,然后根据空间向量夹角公式计算即可.【详解】以过点且垂直于平面的直线为轴,直线,分别为轴,轴,建立如图所示的空间直角坐标系.不妨设,则根据题意可得,,,,所以,,设异面直线与所成角为,则.故选:C.7、C【解析】设是界限上的一点,则,即,再根据双曲线的定义即可得出答案.【详解】解:设是界限上的一点,则,所以,即,在中,,所以点的轨迹为双曲线,即该界线所在曲线为双曲线.故选:C.8、A【解析】设,则,解方程可得结果.【详解】设,则且,所以,所以,所以,所以或(舍).所以.故选:A【点睛】关键点点睛:设是解题关键.9、D【解析】设,由双曲线的性质可得的值,再由,根据勾股定理可得的值,进而求得,最后利用等面积法,即可求解【详解】设,,为双曲线的两个焦点,设焦距为,,点P在双曲线上,,,,,,的面积为,利用等面积法,设的高为,则为点P到x轴的距离,则,故选:D【点睛】本题考查双曲线的性质,难度不大.10、A【解析】根据题意求出,进而根据椭圆的性质求得答案.【详解】椭圆方程化为:,则,则长轴长为8,短轴长为4,离心率,x的取值范围是.即A错误,B,C,D正确.故选:A.11、D【解析】求出抛物线C的准线l的方程,过A作l的垂线段,结合几何意义及抛物线定义即可得解.【详解】抛物线的准线l:,显然点A在抛物线C内,过A作AM⊥l于M,交抛物线C于P,如图,在抛物线C上任取不同于点P的点,过作于点N,连PF,AN,,由抛物线定义知,,于是得,即点P是过A作准线l的垂线与抛物线C的交点时,取最小值,所以的最小值为3.故选:D12、D【解析】先求出双曲线的渐近线方程,然后分别与直线联立,求出A、B两点的横坐标,再利用可求解.【详解】由双曲线方程可知其渐近线方程为:,当时,与联立,得,同理得,由,且可知,所以有,解得.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由已知可用表示,代入所求式子后,结合二次函数的性质可求【详解】解:由题意得,即,所以,根据二次函数的性质可知,当时,上式取得最小值4,故的最小值2故答案为:214、【解析】根据题意求出函数的导函数并且通过导数求出原函数的单调区间,进而得到原函数的极值,因为函数仅有一个零点,所以结合函数的性质可得函数的极大值小于或极小值大于,即可得到答案.【详解】解:由题意可得:函数,所以,令,则或,令,则,所以函数的单调增区间为和,减区间为所以当时函数有极大值,当时函数有极小值,,因为函数仅有一个零点,,所以或,解得或.所以实数的取值范围是故答案为:15、##【解析】作直线l,抛物线准线且交y轴于A点,根据抛物线定义有,进而判断目标式最小时的位置关系,结合点线距离公式求最小值.【详解】如下图示:若直线l,抛物线准线且交y轴于A点,则,,由抛物线定义知:,则,所以,要使目标式最小,即最小,当共线时,又,此时.故答案为:.16、①.②.【解析】根据题意得到拐弯处的数字与其序数的关系,归纳得到当为奇数为;当为为偶数为,分别代入,即可求解.【详解】解:由题意,拐弯处的数字与其序数的关系,如下表:拐弯的序数012345678拐弯处的数1235710131721观察拐弯处的数字的规律:第1个数;第3个数;第5个数;第7个数;,所以当为奇数为;同理可得:当为为偶数为;第33次拐弯的数是,当时,可得,当时,可得,所以超过2021第一个拐弯数是.故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因为,所以.因为角为钝角,所以角为锐角,所以小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=18、(1);(2).【解析】(1)设等差数列的公差为,根据已知条件求,利用等差数列的通项公式可求得数列的通项公式.(2)求得,利用裂项相消法即可求得.【小问1详解】设等差数列的公差为,由,解得,所以,故数列的通项公式;【小问2详解】由(1)得:,所以,所以.19、(1);(2)3.【解析】(1)把展开得,两边同乘得,再代极坐标公式得曲线的直角坐标方程.(2)将代入曲线C的直角坐标方程得,再利用直线参数方程t的几何意义和韦达定理求解.【详解】(1)把展开得,两边同乘得①将代入①,即得曲线的直角坐标方程为②(2)将代入②式,得,点M的直角坐标为(0,3),设这个方程的两个实数根分别为t1,t2,则∴t1<0,t2<0则由参数t的几何意义即得.【点睛】本题主要考查极坐标和直角坐标的互化、直线参数方程t的几何意义,属于基础题.20、.【解析】求得,根据其在上有两个零点,结合零点存在性定理,对参数进行分类讨论,即可求得参数的取值范围.【详解】因为,所以,令,由题意可知在上有两个不同零点.又,若,则,故在上为增函数,这与在上有两个不同零点矛盾,故.当时,,为增函数,当时,,为减函数,故,因为在上有两个不同零点,故,即,即,取,,故在有一个零点,取,,令,,则,故在为减函数,因为,故,故,故在有一个零点,故在上有两个零点,故实数的取值范围为.【点睛】本题考察利用导数由函数的极值点个数求参数的范围,涉及零点存在定理,以及利用导数研究函数单调性,属综合困难题.21、(1)(2)【解析】(1)利用两点间距离公式求得P到椭圆的左右焦点的距离,然后根据椭圆的定义得到a的值,结合c的值,利用a,b,c的平方关系求得的值,再结合焦点位置,写出椭圆的标准方程(2)利用向量的数量积,求得点满足的条件,再结合椭圆的方程,解得的值【小问1详解】解:设椭圆的长半轴长为a,短半轴长为b,半焦距为c,因为所以,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年亚洲合作框架协议
- 2025年公共设施清洁与保养合同
- 2025年仓储场地租用策划合同样本
- 2025年海洋服务项目规划申请报告模范
- 2025年独家代理授权合同文件
- 2025年企业复印纸张采购合同范文
- 2025年合同争议上诉状
- 2025年个体挖掘机租赁合同格式
- 2025年光纤系统维护劳务分包协议
- 2025年企业租车合作协议样本
- 投标流程及注意事项(课堂PPT)
- 日照功率半导体项目投资计划书范文
- 统编版三年级语文下册第三单元《综合性学习:中华传统节日》教案
- 儿童注意力测试表
- 大学生预征对象登记表
- EN50317-2002-铁路应用集电系统受电弓和接触网的动力交互
- 人教版美术八下课程纲要
- 项目部组织机构框图(共2页)
- 机动车登记证书
- 钽铌矿开采项目可行性研究报告写作范文
- 小升初数学衔接班优秀课件
评论
0/150
提交评论