版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市交通大学附属中学嘉定分校2025届高二数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左右焦点分别为、,过作的一条渐近线的垂线,垂足为,若的面积为,则的渐近线方程为A. B.C. D.2.设P为椭圆C:上一点,,分别为左、右焦点,且,则()A. B.C. D.3.已知m,n表示两条不同直线,表示两个不同平面.设有两个命题::若,则;:若,则.则下列命题中为真命题的是()A. B.C. D.4.在区间上随机取一个数,则事件“曲线表示圆”的概率为()A. B.C. D.5.已知函数在处取得极值,则()A. B.C. D.6.已知双曲线C1的一条渐近线方程为y=kx,离心率为e1,双曲线C2的一条渐近线方程为y=x,离心率为e2,且双曲线C1、C2在第一象限交于点(1,1),则=()A.|k| B.C.1 D.27.函数在单调递增的一个必要不充分条件是()A. B.C. D.8.设是等差数列的前项和,已知,,则等于()A. B.C. D.9.方程表示的曲线是()A.一个椭圆和一条直线 B.一个椭圆和一条射线C.一条射线 D.一个椭圆10.双曲线的焦点到渐近线的距离为()A.1 B.2C. D.11.圆与直线的位置关系是()A.相交 B.相切C.相离 D.不能确定12.已知数列为等比数列,,则的值为()A. B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.六面体的所有棱长都为2,底面ABCD是正方形,AC与BD的交点是O,若,则___________.14.椭圆的两焦点为,,P为C上的一点(P与,不共线),则的周长为______.15.教育部门对某校学生的阅读素养进行调研,在该校随机抽取了100名学生进行百分制检测,现将所得的成绩按照,分成6组,并根据所得数据作出了频率分布直方图(如图所示),则成绩在这组的学生人数是________.16.已知一个样本数据为3,3,5,5,5,7,7,现在新加入一个3,一个5,一个7得到一个新样本,则与原样本数据相比,新样本数据平均数______,方差______.(“变大”、“变小”、“不变”)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的离心率为,,是椭圆的左、右焦点,过且垂直于x轴的直线被椭圆C截得的线段长为1(1)求椭圆C的方程;(2)过点的直线l与椭圆C交于A,B两点,求(O为坐标原点)的面积的最大值18.(12分)已知抛物线:()的焦点为,点在上,点在的内侧,且的最小值为(1)求的方程;(2)过点的直线与抛物线交于不同的两点,,直线,(为坐标原点)分别交直线于点,记直线,,的斜率分别为,,,若,求的值19.(12分)如图,已知菱形ABCD的边长为3,对角线,将△沿着对角线BD翻折至△的位置,使得,在平面ABCD上方存在一点M,且平面ABCD,(1)求证:平面平面ABD;(2)求点M到平面ABE的距离;(3)求二面角的正弦值20.(12分)如图,四棱柱的底面为正方形,平面,,,点在上,且.(1)求证:;(2)求直线与平面所成角的正弦值;(3)求平面与平面夹角的余弦值.21.(12分)在△中,已知、、分别是三内角、、所对应的边长,且(Ⅰ)求角的大小;(Ⅱ)若,且△的面积为,求.22.(10分)如图,在三棱锥中,平面平面,,都是等腰直角三角形,,,,分别为,的中点.(1)求证:平面;(2)求证:平面.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求得,根据的面积列方程,由此求得,进而求得双曲线的渐近线方程.【详解】依题意,双曲线的一条渐近线为,则,所以,所以,所以.所以双曲线渐近线方程为.故选:D【点睛】本小题主要考查双曲线渐近线的有关计算,属于中档题.2、B【解析】根据椭圆的定义写出,再根据条件即可解得答案.【详解】根据P为椭圆C:上一点,则有,又,所以,故选:B.3、B【解析】利用直线与平面,平面与平面的位置关系判断2个命题的真假,再利用复合命题的真值表判断选项的正误即可【详解】,表示两条不同直线,,表示两个不同平面:若,,则也可能,也可能与相交,所以是假命题,为真命题;:令直线的方向向量为,直线的方向向量为,若,则,则,所以是真命题,所以为假命题;所以为假命题,是真命题,为假命题,是真命题,所以为假命题故选:4、D【解析】先求出曲线表示圆参数的范围,再由几何概率可得答案.【详解】由可得曲线表示圆,则解得或又所以曲线表示圆的概率为故选:D5、B【解析】根据极值点处导函数为零可求解.【详解】因为,则,由题意可知.经检验满足题意故选:B6、C【解析】根据渐近线方程设出双曲线方程,再由过点,可知双曲线方程,从而可求离心率.【详解】由题,设双曲线的方程为,又因为其过,且可知,不妨设,代入,得,所以双曲线的方程为,所以,同理可得双曲线的方程为,所以可得,所以,当时,结论依然成立.故选:C7、D【解析】求出导函数,由于函数在区间单调递增,可得在区间上恒成立,求出的范围,再根据充分必要条件的定义即可判断得解.【详解】由题得,函数在区间单调递增,在区间上恒成立,而在区间上单调递减,选项中只有是的必要不充分条件.选项AC是的充分不必要条件,选项B是充要条件.故选:D8、C【解析】依题意有,解得,所以.考点:等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念.在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算9、A【解析】根据题意得到或,即可求解.【详解】由方程,可得或,即或,所以方程表示的曲线为一个椭圆或一条直线.故选:A.10、A【解析】分别求出双曲线的焦点坐标和渐近线方程,利用点到直线的距离公式求出结果【详解】双曲线中,焦点坐标为渐近线方程为:∴双曲线的焦点到渐近线的距离故选:A11、B【解析】用圆心到直线的距离与半径的大小判断【详解】解:圆的圆心到直线的距离,等于圆的半径,所以圆与直线相切,故选:B12、B【解析】根据等比数列的性质计算.【详解】由等比数列的性质可知,且等比数列奇数项的符号相同,所以,即.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】结合空间向量运算求得.【详解】,.所以.故答案为:14、【解析】结合椭圆的定义求得正确答案.【详解】椭圆方程为,所以,所以三角形的周长为.故答案为:15、20【解析】根据频率分布直方图求出成绩在这组的频率,从而可得出答案.【详解】解:由频率分布直方图可知,成绩在这组的频率为,所以成绩在这组的学生人数为(人).故答案为:20.16、①.不变②.变大【解析】通过计算平均数和方差来确定正确答案.【详解】原样本平均数为,原样本方差为,新样本平均数为,新样本方差为.所以平均数不变,方差变大.故答案为:不变;变大三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)1.【解析】(1)根据给定条件结合列式计算得解.(2)设出直线l的方程,与椭圆C的方程联立,借助韦达定理结合均值不等式计算作答.【小问1详解】椭圆C的半焦距为c,离心率,因过且垂直于x轴的直线被椭圆C截得的弦长为1,将代入椭圆C方程得:,即,则有,解得,所以椭圆C的方程为.【小问2详解】由(1)知,,依题意,直线l的斜率不为0,则设直线l的方程为,,,由消去x并整理得:,,,的面积,,设,,,,当且仅当,时取得“=”,于是得,,所以面积的最大值为1.【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题18、(1)(2)【解析】(1)先求出抛物线的准线,作于由抛物线的定义,可得,从而当且仅当,,三点共线时取得最小,得出答案.(2)设,,设:与抛物线方程联立,得出韦达定理,设出直线的方程分别与直线的方程联立得出点的坐标,进一步得到,的表达式,由条件可得答案.【小问1详解】的准线为:,作于,则,所以,因为点在的内侧,所以当且仅当,,三点共线时取得最小值,所以,解得,所以的方程为【小问2详解】由题意可知的斜率一定存在,且不为0,设:(),联立消去得,由,即,得,结合,知记,,则直线的方程为由得易知,所以同理可得由,可得,即,化简得,结合,解得19、(1)证明见解析;(2)1;(3).【解析】(1)过E作EO垂直于BD于O,连接AO,由勾股定义易得,由菱形的性质有,再根据线面垂直、面面垂直的判定即可证结论.(2)构建空间直角坐标系,确定相关点的坐标,进而求的坐标及面ABE的法向量,应用空间向量的坐标运算求点面距.(3)由(2)求得面MBA的法向量,结合(2)中面ABE的法向量,应用空间向量夹角的坐标表示求二面角的余弦值,进而求其正弦值.【小问1详解】过E作EO垂直于BD于O,连接AO,因为,,故,同理,又,所以,即因为ABCD为菱形,所以,又,所以面ABD,又面EBD,所以面面ABD【小问2详解】以O为坐标原点,以,,分别为x轴,y轴,z轴的正方向,如图建立空间直角坐标系,则,,,,,所以,,面ABE的法向量为,所以,令,则又,则点M到面ABE的距离为【小问3详解】由(2)得:面ABE的一个法向量为,且,若面MBA的法向量为,则,令,则所以,故二面角正弦值为20、(1)证明见解析(2)(3)【解析】(1)以为原点,所在的直线为轴的正方向建立空间直角坐标系,求出平面的一个法向量可得,即平面,再由线面垂直的性质可得答案;(2)设直线与平面所成角的为,可得答案;(3)由二面角的向量求法可得答案.【小问1详解】以为原点,所在的直线为轴的正方向建立空间直角坐标系,则,,,,,所以,,,设平面的一个法向量为,所以,即,令,则,所以,所以,所以平面,平面,所以.【小问2详解】,所以,由(1)平面的一个法向量为,设直线与平面所成角的为,所以直线与平面所成角的正弦值.【小问3详解】由已知为平面的一个法向量,且,由(1)平面的一个法向量为,所以,由图可得平面与平面夹角的余弦值为.21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用余弦定理和得到关于角A的关系式,求解A(II)再结合正弦面积公式得到三角形的边长的求解【详解】解:(Ⅰ)在△ABC中,(Ⅱ)由,得22、(1)证明见解析(2)证明见解析【解析】(1)由三角形的中位线定理可证得MN∥AB,再由线面垂直的判定定理可证得结论,(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初二新学期的学习计划
- 国开(河北)03949《汽车专业资讯检索》形成性考核一答案
- 队列会操理论2024(总队)专项测试题(二)
- 体育 活动管理方面安全管理制度
- 语文统编版(2024)一年级上册语文园地六 教案
- 2024高考物理一轮复习第46讲测定金属丝的电阻率(讲义)(学生版+解析)
- 《学前儿童卫生保健》 课件 7.1 托幼园所的生活制度(课件)
- 敢于说不课件教学课件
- 第4章 神经计算课件
- 会计数据分析 Solutions-Manual Chapter-7-Labs-SM
- 第四单元测试卷(四)-2024-2025学年五年级语文上册(统编版)
- 《 在民族复兴的历史丰碑上》课件(26张)2024-2025学年统编版高中语文选择性必修上册第一单元
- 保安公司反恐培训方案
- 1、新世纪版 第一课 电脑中的信息是如何表示的(教案)
- 怀念一位志愿军老战士(2023年四川遂宁中考语文试卷记叙文阅读题及答案)
- 新能源汽车动力电池管理考核试卷
- 7.2 共建美好集体 课件-2024-2025学年道德与法治七年级上册(统编版2024)
- 2024年人教版初二物理(上册)期中考卷及答案(各版本)
- 水力发电可变成本优化
- 2024-2030年中国公路行业市场发展分析及前景展望与投资机会研究报告
- 2024年印度家用WiFi路由器行业状况及未来发展趋势报告
评论
0/150
提交评论