云南省凤庆二中2025届数学高一上期末学业水平测试试题含解析_第1页
云南省凤庆二中2025届数学高一上期末学业水平测试试题含解析_第2页
云南省凤庆二中2025届数学高一上期末学业水平测试试题含解析_第3页
云南省凤庆二中2025届数学高一上期末学业水平测试试题含解析_第4页
云南省凤庆二中2025届数学高一上期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省凤庆二中2025届数学高一上期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.要得到函数的图象,只需将函数的图象()A.向左平移 B.向右平移C.向右平移 D.向左平移2.圆的半径和圆心坐标分别为A. B.C. D.3.满足的集合的个数为()A. B.C. D.4.对于实数x,“0<x<1”是“x<2”的()条件A.充要 B.既不充分也不必要C.必要不充分 D.充分不必要5.在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大.收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是()A.P→A→Q B.P→B→QC.P→C→Q D.P→D→Q6.已知函数是定义在上的偶函数,当时,,则函数的零点个数为()A.20 B.18C.16 D.147.若是第二象限角,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限8.设,则A.f(x)与g(x)都是奇函数 B.f(x)是奇函数,g(x)是偶函数C.f(x)与g(x)都是偶函数 D.f(x)是偶函数,g(x)是奇函数9.直线l1:x+ay+1=0与l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,则直线l2的斜率为()A. B.C.1 D.﹣110.已知,,,则,,的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数图像过点,则该幂函数的解析式是______________12.若函数在上单调递增,则的取值范围是__________13.下列命题中所有正确的序号是______________①函数最小值为4;②函数的定义域是,则函数的定义域为;③若,则的取值范围是;④若(,),则14.写出一个最小正周期为2的奇函数________15.已知圆,圆,则两圆公切线的方程为__________16.已知,,则的值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是偶函数(1)求实数的值;(2)若函数的最小值为,求实数的值;(3)当为何值时,讨论关于的方程的根的个数18.已知函数,且最小正周期为.(1)求的单调增区间;(2)若关于的方程在上有且只有一个解,求实数的取值范围.19.已知(1)若函数f(x)的图象过点(1,1),求不等式f(x)<1的解集;(2)若函数只有一个零点,求实数a的取值范围20.已知角终边上有一点,且.(1)求m的值,并求与的值;(2)化简并求的值.21.已知函数,其中(1)求函数的定义域;(2)若函数的最小值为,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据左右平移的平移特征(左加右减)即可得解.【详解】解:要得到函数的图象,只需将函数的图象向右平移个单位即可.故选:B.2、D【解析】半径和圆心坐标分别为,选D3、B【解析】列举出符合条件的集合,即可得出答案.【详解】满足的集合有:、、.因此,满足的集合的个数为.故选:B.【点睛】本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.4、D【解析】从充分性和必要性的定义,结合题意,即可容易判断.【详解】若,则一定有,故充分性满足;若,不一定有,例如,满足,但不满足,故必要性不满足;故“0<x<1”是“x<2”的充分不必要条件.故选:.5、B【解析】定性分析即可得到答案【详解】B、D两点,横坐标相同,而D点的纵坐标大于B点的纵坐标,显然,B点上升阶段的水平距离长;A、B两点,纵坐标相同,而A点的横坐标小于B点的横坐标,等经过A点的篮球运行到与B点横坐标相同时,显然在B点上方,故B点上升阶段的水平距离长;同理可知C点路线优于A点路线,综上:P→B→Q是被“盖帽”的可能性最大的线路.故选:B6、C【解析】解方程,得或,作出的图象,由对称性只要作的部分,观察的图象与直线和直线的交点的个数即得【详解】,或根据函数解析式以及偶函数性质作图象,当时,.,是抛物线的一段,当,由的图象向右平移2个单位,并且将每个点的纵坐标缩短为原来的一半得到,依次得出y轴右侧的图象,根据对称轴可得左侧的结论,时,,的图象与直线和的交点个数,分别有3个和5个,∴函数g(x)的零点个数为,故选:C【点睛】本题考查函数零点个数,解题方法是数形结合思想方法,把函数零点个数转化为函数图象与直线交点个数,由图象易得结论7、D【解析】先分析得到,即得点所在的象限.【详解】因为是第二象限角,所以,所以点在第四象限,故选D【点睛】本题主要考查三角函数的象限符合,意在考查学生对该知识的理解掌握水平,属于基础题.8、B【解析】定义域为,定义域为R,均关于原点对称因为,所以f(x)是奇函数,因为,所以g(x)是偶函数,选B.9、C【解析】利用直线l1:x+ay+1=0与l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,则,解出即可.【详解】因为直线l1:x+ay+1=0与l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直.所以,即.解得:.故选:C【点睛】本题考查由两条直线互相垂直求参数的问题,属于基础题10、B【解析】分别求出的范围,然后再比较的大小.【详解】,,,,,,并且,,综上可知故选:B【点睛】本题考查指对数和三角函数比较大小,意在考查转化与化归的思想和基础知识,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设出幂函数的函数表达,然后代点计算即可.【详解】设,因为,所以,所以函数的解析式是故答案为:.12、【解析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题13、③④【解析】利用基本不等式可判断①正误;利用抽象函数的定义域可判断②的正误;解对数不等式可判断③;构造函数,函数在上单调递减,结合,求得可判断④.详解】对于①,当时,,由基本不等式可得,当且仅当时,即当时,等号成立,但,故等号不成立,所以,函数,的最小值不是,①错误;对于②,若函数的定义域为,则有,解得,即函数的定义域为,②错误;对于③,若,所以当时,解得:,不满足;当时,解得:,所以的取值范围是,③正确;对于④,令,函数在上单调递减,由得,则,即,故④正确.故答案为:③④.14、【解析】根据奇函数性质可考虑正弦型函数,,再利用周期计算,选择一个作答即可.【详解】由最小正周期为2,可考虑三角函数中的正弦型函数,,满足,即是奇函数;根据最小正周期,可得.故函数可以是中任一个,可取.故答案为:.15、【解析】圆,圆心为(0,0),半径为1;圆,圆心为(4,0),半径为5.圆心距为4=5-1,故两圆内切.切点为(-1,0),圆心连线为x轴,所以两圆公切线的方程为,即.故答案.16、【解析】根据两角和的正弦公式即可求解.【详解】由题意可知,因为,所以,所以,则故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)当时,方程有一个根;当时,方程没有根;当或或时,方程有两个根;当时,方程有三个根;当时,方程有四个根【解析】(1)利用偶函数满足,求出的值;(2)对函数变形后利用二次函数的最值求的值;(3)定义法得到的单调性,方程通过换元后得到的根的情况,通过分类讨论最终求出结果.【小问1详解】由题意得:,即,所以,其中,∴,解得:【小问2详解】,∴,故函数的最小值为,令,故的最小值为,等价于,解得:或,无解综上:【小问3详解】由,令,,有由,有,,可得,可知函数为增函数,故当时,函数单调递增,由函数为偶函数,可知函数的增区间为,减区间为,令,有,方程(记为方程①)可化为,整理为:(记为方程②),,当时,有,此时方程②无解,可得方程①无解;当时,时,方程②的解为,可得方程①仅有一个解为;时,方程②的解为,可得方程①有两个解;当时,可得或,1°当方程②有零根时,,此时方程②还有一根为,可得此时方程①有三个解;2°当方程②有两负根时,可得,不可能;3°当方程②有两正根时,可得:,又由,可得,此时方程①有四个根;4°当方程②有一正根一负根时,,可得:或,又由,可得或,此时方程①有两个根,由上知:当时,方程①有一个根;当时,方程①没有根;当或或时,方程①有两个根;当时,方程①有三个根;当时,方程①有四个根【点睛】对于复合函数根的个数问题,要用换元法来求解,通常方法会用到根的判别式,导函数,基本不等式等.18、(1);(2).【解析】(1)根据已知条件求得,再用整体法求函数单调增区间即可;(2)根据(1)中所求函数单调性,结合函数的值域,即可求得参数的值.【小问1详解】因为函数最小正周期为,故可得,解得,则,令,解得.故的单调增区间是:.【小问2详解】因为,由(1)可知,在单调递增,在单调递减,又,,,故方程在上有且只有一个解,只需.故实数的取值范围为.19、(1)(-1,1)(2)a≥0或【解析】(1)将点(1,1)代入函数解析式中可求出的值,然后根据对数函数的单调性解不等式即可,(2)将问题转化为只有一解,再转化为关于x的方程ax2+x=1只有一个正根,然后分和分析求解【小问1详解】∵函数的图象过点(1,1),,解得此时由f(x)<1,得,解得故f(x)<1的解集为(-1,1)【小问2详解】∵函数只有一个零点,只有一解,将代入ax+1>0,得x>0,∴关于x的方程ax2+x=1只有一个正根当a=0时,x=1,满足题意;当a≠0时,若ax2+x-1=0有两个相等的实数根,由,解得,此时x=2,满足题意;若方程ax2+x-1=0有两个相异实数根,则两根之和与积均为,所以方程两根只能异号,所以,a>0,此时方程有一个正根,满足题意综上,a≥0或2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论