版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省赣州市达标名校高一上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是第二象限角,且,则点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限2.若点在函数的图像上,则A.8 B.6C.4 D.23.已知函数,则()A.2 B.5C.7 D.94.设p:关于x的方程有解;q:函数在区间上恒为正值,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是A. B.C. D.6.若方程在区间内有两个不同的解,则A. B.C. D.7.棱长为1的正方体可以在一个棱长为的正四面体的内部任意地转动,则的最小值为A. B.C. D.8.若集合,,则A. B.C. D.9.下列命题中正确的是()A. B.C. D.10.直线与曲线有且仅有个公共点,则实数的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的部分图象如图所示.则函数的解析式为______12.已知扇形的圆心角为,其弧长是其半径的2倍,则__________13.已知平面向量,,,,,则的值是______14.不等式的解集为_____________.15.已知为第四象限的角,,则________.16.已知函数(1)当时,求的值域;(2)若,且,求的值;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,(1)若,求的值;(2)若,,求的值域18.已知集合,(1)当时,求集合;(2)若,“”是“”的充分条件,求实数的取值范围19.某种放射性元素的原子数随时间的变化规律是,其中是正的常数,为自然对数的底数.(1)判断函数是增函数还是减函数;(2)把表示成原子数的函数.20.设为实数,函数.(1)若,求的取值范围;(2)讨论的单调性;(3)是否存在满足:在上值域为.若存在,求的取值范围.21.已知函数,若区间上有最大值5,最小值2.(1)求的值(2)若,在上单调,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据所在象限可判断出,,从而可得答案.【详解】为第二象限角,,,则点位于第二象限.故选:B.2、B【解析】由已知利用对数的运算可得tanθ,再利用倍角公式及同角三角函数基本关系的运用化简即可求值【详解】解:∵点(8,tanθ)在函数y=的图象上,tanθ,∴解得:tanθ=3,∴2tanθ=6,故选B【点睛】本题主要考查了对数的运算性质,倍角公式及同角三角函数基本关系的运用,属于基础题3、D【解析】先求出,再求即可,【详解】由题意得,所以,故选:D4、B【解析】先化简p,q,再利用充分条件和必要条件的定义判断.【详解】因为方程有解,即方程有解,令,则,即;因为函数在区间上恒为正值,所以在区间上恒成立,即在区间上恒成立,解得,所以p是q的必要不充分条件,故选:B5、B【解析】要取得最小值,则与共线且反向即位于的中线上,中线长为设,则则当时,取最小值,故选第II卷(非选择题6、C【解析】由,得,所以函数的图象在区间内的对称轴为故当方程在区间内有两个不同的解时,则有选C7、A【解析】由题意可知正方体的外接球为正四面体的内切球时a最小,此时R=,.8、C【解析】因为集合,,所以A∩B=x故选C.9、A【解析】利用平面向量的加法、加法法则可判断ABD选项的正误,利用平面向量数量积可判断C选项的正误.【详解】对于A选项,,A选项正确;对于B选项,,B选项错误;对于C选项,,C选项错误;对于D选项,,D选项错误.故选:A.10、A【解析】如图所示,直线过点,圆的圆心坐标直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数的取值范围是考点:直线与圆相交,相切问题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由图象可得出函数的最小正周期,可求得的值,再由结合的取值范围可求得的值,即可得出函数的解析式.【详解】函数的最小正周期为,则,则,因为且函数在处附近单调递减,则,得,因,所以.所以故答案为:.12、-1【解析】由已知得,所以则,故答案.13、【解析】根据向量垂直向量数量积等于,解得α·β=,再利用向量模的求法,将式子平方即可求解.【详解】由得,所以,所以所以.故答案为:14、【解析】将不等式转化为,利用指数函数的单调性求解.【详解】不等式为,即,解得,所以不等式的解集为,故答案为:15、【解析】给两边平方先求出,然后利用完全平方公式求出,再利用公式可得结果.【详解】∵,两边平方得:,∴,∴,∵为第四象限角,∴,,∴,∴.故答案为:【点睛】此题考查的是同角三角函数的关系和二倍角公式,属于基础题.16、(1)(2)【解析】(1)化简函数解析式为,再利用余弦函数的性质求函数的值域即可;(2)由已知得,利用同角之间的关系求得,再利用凑角公式及两角差的余弦公式即可得解.【小问1详解】,,利用余弦函数的性质知,则【小问2详解】,又,,则则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据的坐标关系,得到,再代入即可求值.(2)用正弦、余弦,二倍角公式和辅助角公式化简,得到,根据,求出的值域.详解】(1)若,则,∴.∴.(2),∵,∴,∴,∴,∴的值域为【点睛】本题第一问主要考查向量平行的坐标表示和正切二倍角公式,考查计算能力.第二问主要考查正弦,余弦的二倍角公式和辅助角公式以及三角函数的值域问题,属于中档题.18、(1)(2)【解析】(1)先化简集合A,由解得集合,然后利用并集运算求解.(2)根据“”是“”的充分条件,转化为求解.【小问1详解】由得:,即,当时,,所以.【小问2详解】因为,所以,由“”是“”的充分条件,则,则,实数的取值范围是.19、(1)减函数;(2)(其中).【解析】(1)即得是关于的减函数;(2)利用指数式与对数式的互化,可以把t表示为原子数N的函数试题解析:(1)由已知可得因为是正常数,,所以,即,又是正常数,所以是关于的减函数(2)因为,所以,所以,即(其中).点睛:本题利用指数函数的单调性即可容易得出函数的单调性,利用指数与对数的互化可得出函数的表达式.20、(1);(2)在上单调递增,在上单调递减;(3)不存在.【解析】(1)直接求出,从而通过解不等式可求得的取值范围;(2)根据二次函数的单调性即可得出分段函数的单调性;(3)首先判断出,从而得到,即在上单调递增;然后把问题转化为在上有两个不等实数根的问题,从而判断出不存在的值.【详解】(1)∵,∴,即,所以,所以的取值范围为.(2)易知,对于,其对称轴为,开口向上,所以在上单调递增;对于,其对称轴为,开口向上,所以在上单调递减,综上知,在上单调递增,在上单调递减;(3)由(2)得,又在上的值域为,所以,又∵在上单调递增,∴,即在上有两个不等实数根,即在上有两个不等实数根,即在上有两个不等实数根,令,则其对称轴为,所以在上不可能存在两个不等的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保行业技术培训管理规定
- 2024年庆元旦演讲稿(5篇)
- 光学(讲练)【解析版】2024年中考物理二轮复习讲义
- 三角形全等的重要模型-2021-2022学年北师大版七年级数学下册专项突破
- 高考语文一轮复习:填写词语(原卷版+解析)
- 小学春节活动方案(2篇)
- 2024服装买卖合同范本买卖
- 防盗门购买合同标准版
- 职业技能大赛-室内装饰设计师(室内陈设与空间设计)理论知识题库(附参考答案)
- 2022年科级干部培训参考心得体会5篇
- 竣工结算审计服务投标方案(完整技术标)
- 幼儿园中班语言《两只蚊子吹牛皮》课件
- 肺炎护理查房完整版PPT资料课件
- 消化道出血课件
- 与食品经营相适应的主要设备设施布局、操作流程等文件
- 跑、冒、滴、漏的相关问题治理
- 勤俭节约低碳环保演讲稿6篇
- 人教A版选修2《圆锥曲线的光学性质及其应用》评课稿
- 蒂芬巴赫公司电液控制系统维护手册
- 2023年四川省凉山州中考数学适应性试卷
- TSG T7008-2023宣贯-杂物电梯
评论
0/150
提交评论