版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大庆大庆十中、二中、二十三中、二十八中2025届高二上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.某摊主2020年4月初向银行借了免息贷款8000元,用于进货,因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费800元,余款作为资金全部用于下月再进货,如此继续,预计到2021年3月底该摊主的年所得收入为()(取,)A.24000元 B.26000元C.30000元 D.32000元2.已知双曲线:的右焦点为,过的直线(为常数)与双曲线在第一象限交于点.若(为原点),则的离心率为()A. B.C. D.53.在等差数列中,,,则()A. B.C. D.4.平行六面体中,若,则()A. B.1C. D.5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B.C. D.6.如果,,那么直线不经过的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知等比数列中,,则这个数列的公比是()A.2 B.4C.8 D.168.已知l,m是两条不同的直线,是两个不同的平面,且,则()A.若,则 B.若,则C.若,则 D.若,则9.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴广交会的四个不同地方服务,不同的分配方案有()种A.· B.·C. D.10.三等分角是“古希腊三大几何问题”之一,数学家帕普斯巧妙地利用圆弧和双曲线解决了这个问题.如图,在圆D中,为其一条弦,,C,O是弦的两个三等分点,以A为左焦点,B,C为顶点作双曲线T.设双曲线T与弧的交点为E,则.若T的方程为,则圆D的半径为()A. B.1C.2 D.11.数列满足,,,则数列的前10项和为()A.60 B.61C.62 D.6312.已知点,则满足点到直线的距离为,点到直线距离为的直线的条数有()A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.若展开式的二项式系数之和是64,则展开式中的常数项的值是__________.14.已知正方体的棱长为为的中点,为面内一点.若点到面的距离与到直线的距离相等,则三棱锥体积的最小值为__________15.已知关于的不等式恒成立,则实数的取值范围是___________.16.已知抛物线的焦点到准线的距离为,则抛物线的标准方程为___________.(写出一个即可)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,底面为梯形,底面,,,,.(1)求证:平面平面;(2)设为上一点,满足,若直线与平面所成的角为,求二面角的余弦值.18.(12分)在平面直角坐标系中,动点,满足,记点的轨迹为(1)请说明是什么曲线,并写出它的方程;(2)设不过原点且斜率为的直线与交于不同的两点,,线段的中点为,直线与交于两点,,请判断与的关系,并证明你的结论19.(12分)已知数列中,,且满足(1)求证数列是等差数列,并求数列的通项公式;(2)求数列的前n项和20.(12分)已知函数在处的切线与直线平行(1)求值,并求此切线方程;(2)证明:21.(12分)在平面直角坐标系中,点到两点的距离之和等于4,设点的轨迹为曲线(1)求曲线的方程;(2)设直线与交于两点,为何值时?22.(10分)已知函数满足.(1)求的解析式,并判断其奇偶性;(2)若对任意,不等式恒成立,求实数a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,从4月份起每月底用于下月进借货的资金依次记为,由题意得出的递推关系,变形构造出等比数列,由得其通项公式后可得结论【详解】设,从4月份起每月底用于下月进借货的资金依次记为,,、同理可得,所以,而,所以数列是等比数列,公比为,所以,,总利润为故选:D【点睛】思路点睛:本题考查数列的实际应用.解题方法是用数列表示月初进货款,得出递推关系,然后构造等比数列求解2、D【解析】取双曲线的左焦点,连接,计算可得,即.设,则,,解得:,利用勾股定理计算可得,即可得出结果.【详解】取双曲线的左焦点,连接,,则因为,所以,即.,.设,则,,解得:.,,..故选:D3、B【解析】利用等差中项的性质可求得的值,进而可求得的值.【详解】由等差中项的性质可得,则.故选:B.4、D【解析】根据空间向量的运算,表示出,和已知比较可求得的值,进而求得答案.【详解】在平行六面体中,有,故由题意可知:,即,所以,故选:D.5、A【解析】设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.6、A【解析】将直线化为,结合已知条件即可判断不经过的象限.【详解】由题设,直线可写成,又,,∴,,故直线过二、三、四象限,不过第一象限.故选:A.7、A【解析】直接利用公式计算即可.【详解】设等比数列的公比为,由已知,,所以,解得.故选:A8、B【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系分析选项A,C,D,由平面与平面垂直的判定定理判定选项D.【详解】选项A.由,,直线l,m可能相交、平行,异面,故不正确.选项B.由,,则,故正确.选项C.由,,直线l,m可能相交、平行,异面,故不正确.选项D.由,,则可能相交,可能平行,故不正确.故选:B9、B【解析】先按要求分为四组,再四个不同地方,四个组进行全排列.【详解】两个组各2人,两个组各1人,属于部分平均分组,要除以平均分组的组数的全排列,故分组方案有种,再将分得的4组,分配到四个不同地方服务,则不同的分配方案有种.故选:B10、C【解析】由题设写出双曲线的方程,对比系数,求出即可获解【详解】由题知所以双曲线的方程为又由题设的方程为,所以,即设AB的中点为,则由.所以,即圆的半径为2故选:C11、B【解析】讨论奇偶性,应用等差、等比前n项和公式对作分组求和即可.【详解】当且为奇数时,,则,当且为偶数时,,则,∴.故选:B.12、D【解析】以为圆心,为半径,为圆心,为半径分别画圆,将所求转化为求圆与圆的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以为圆心,为半径,为圆心,为半径分别画圆,如图所示,由题意,满足点到直线的距离为,点到直线距离为的直线的条数即为圆与圆的公切线条数,因为,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线有4条.故选:D【点睛】解答本题的关键是将满足点到直线的距离为,点到直线距离为的直线的条数转化为圆与圆的公切线条数,从而根据圆与圆的位置关系判断出公切线条数.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先利用展开式的二项式系数和是求出,然后即可求出二项式的常数项.【详解】由题知展开式的二项式系数之和是,故有,可得,知当时有.故展开式中的常数项为.故答案为:.【点睛】本题考查了利用二项式的系数和求参数,求二项式的常数项,属于基础题.14、##【解析】由题意可知,点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面建立平面直角坐标系,求出抛物线方程,直线的方程,将直线向抛物线平移,恰好与抛物线相切时,切点为点,此时的面积最小,则三棱锥体积的最小【详解】因为为面内一点,且点到面的距离与到直线的距离相等,所以点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面,以所在的直线为轴,以的中垂线为轴建立平面直角坐标系,则,设抛物线方程为,则,得,所以抛物线方程为,,直线的方程为,即,设与直线平行且与抛物线相切的直线方程为,由,得,由,得,所以与抛物线相切的直线为,此时切点为,且的面积最小,因为点到直线的距离为,所以的面积的最小值为,所以三棱锥体积的最小值为,故答案为:15、【解析】参变分离,可得,设,求导分析单调性,可得,即得解【详解】因为,所以不等式可化为,设,则,设,由于故在上单调递增,且,则当时,,单调递减;当时,,单调递增,所以,则,即.故答案为:16、(答案不唯一)【解析】设出抛物线方程,根据题意即可得出.【详解】设抛物线的方程为,根据题意可得,所以抛物线的标准方程为.故答案为:(答案不唯一).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由三角形的边角关系可证,再由底面,可得.即可证明底面,由面面垂直的判定定理得证.(2)以点为坐标原点,,,分别为,,轴建立空间坐标系,利用空间向量法求出二面角的余弦值.【详解】解析:(1)证明:由,,,,,所以,又,∴,∴,∴,因为底面,底面,∴.因为,底面,底面,底面,底面,所以面面.(2)由(1)可知为与平面所成的角,∴,∴,,由及,可得,,以点为坐标原点,,,分别为,,轴建立空间坐标系,则,,,,设平面的法向量为,则,,取,设平面的法向量为,则,,取,所以,所以二面角余弦值为.【点睛】本题考查面面垂直的判定,线面垂直的性质,利用空间向量法求二面角的余弦值,属于中档题.18、(1)椭圆,(2),证明见解析【解析】(1)结合椭圆第一定义直接判断即可求出的轨迹为;(2)设直线的方程为,,,联立椭圆方程,写出韦达定理;由中点公式求出点,进而得出直线方程,联立椭圆方程求出,结合弦长公式可求,可转化为,结合韦达定理可化简,进而得证.【小问1详解】设,,则因为,满足,即动点表示以点,为左、右焦点,长轴长为4,焦距为的椭圆,其轨迹的方程为;【小问2详解】可以判断出,下面进行证明:设直线的方程为,,,由方程组,得①,方程①判别式为,由,即,解得且由①得,,所以点坐标为,直线方程为,由方程组,得,,所以又所以.19、(1)证明见解析;;(2).【解析】(1)根据等差数列的定义证明为常数即可;(2)利用错位相减法即可求和.【小问1详解】由得,,∴数列是以1为首项,1为公差的等差数列,∴,∴;【小问2详解】①,②,①-②得:,.20、(1);;(2)证明见解析.【解析】(1)根据导数几何意义可知,解方程求得,进而得到切线方程;(2)当时,由,知不等式成立;当时,令,利用导数可求得在上单调递增,从而得到,由此可得结论.【小问1详解】,,在处的切线与直线平行,即切线斜率为,,解得:,,,所求切线方程为:,即;【小问2详解】要证,即证;①当时,,,,即,;②当时,令,,,当时,,,,,即,在上单调递增,,在上单调递增,,即在上恒成立;综上所述:.【点睛】思路点睛:本题第二问考查利用导数证明不等式的问题,解题的基本思路是将问题转化为函数最值的求解问题;通过构造函数,利用导数求函数最值的方法可确定恒成立,从而得到所证结论.21、(1);(2).【解析】(1)由题意可得:点的轨迹为椭圆,设标准方程为:,则,,,解出可得椭圆的标准方程(2)设,,直线方程与椭圆联立,化为:,恒成立,由,可得,把根与系数的关系代入解得【详解】解:(1)由题意可得:点的轨迹为椭圆,设标准方程为:,则,,,可得椭圆的标准方程为:(2)设,,联立,化为:,恒成立,,,,,,解得.满足当时,能使【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论