版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区第一五六中学2025届数学高二上期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“且”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.椭圆的左、右焦点分别为,过焦点的倾斜角为直线交椭圆于两点,弦长,若三角形的内切圆的面积为,则椭圆的离心率为()A. B.C. D.3.在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为()A.圆 B.椭圆C.抛物线 D.直线4.方程有两个不同的解,则实数k的取值范围为()A. B.C. D.5.已知数列的前项和满足,记数列的前项和为,.则使得的值为()A. B.C. D.6.若直线先向右平移一个单位,再向下平移一个单位,然后与圆相切,则c的值为()A.8或-2 B.6或-4C.4或-6 D.2或-87.长方体中,,,,为侧面内(含边界)的动点,且满足,则四棱锥体积的最小值为()A. B.C. D.8.若直线a,b是异面直线,点O是空间中不在直线a,b上的任意一点,则()A.不存在过点O且与直线a,b都相交的直线B.过点O一定可以作一条直线与直线a,b都相交C.过点O可以作无数多条直线与直线a,b都相交D.过点O至多可以作一条直线与直线a,b都相交9.德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时认识到,求曲线的切线的斜率依赖于纵坐标的差值和横坐标的差值,以及当此差值变成无限小时它们的比值,这也正是导数的几何意义.设是函数的导函数,若,且对,,且总有,则下列选项正确的是()A. B.C. D.10.已知抛物线的焦点与椭圆的右焦点重合,则抛物线的准线方程为()A. B.C. D.11.已知直线l经过,两点,则直线l的倾斜角是()A.30° B.60°C.120° D.150°12.抛物线的准线方程是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.中国古代《易经》一书中记载,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位古人在从右到左依次排列的红绳子上打结,满三进一,用来记录每年进的钱数.由图可得,这位古人一年的收入的钱数为___________.14.若等比数列满足,则的前n项和____________15.已知双曲线C:的两焦点分别为,,P为双曲线C上一点,若,则=___________.16.椭圆上一点到两个焦点的距离之和等于,则的标准方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C经过坐标原点O和点(4,0),且圆心在x轴上(1)求圆C的方程;(2)已知直线l:与圆C相交于A、B两点,求所得弦长值18.(12分)已知函数(1)当时,求的单调区间;(2)当时,证明:存在最大值,且恒成立.19.(12分)圆锥曲线的方程是.(1)若表示焦点在轴上的椭圆,求的取值范围;(2)若表示焦点在轴上且焦距为的双曲线,求的值.20.(12分)某保险公司根据官方公布的历年营业收入,制成表格如下:表1年份2011201220132014201520162017201820192020年份序号x12345678910营业收入y(亿元)0.529.3633.6132352571912120716822135由表1,得到下面的散点图:根据已有的函数知识,某同学选用二次函数模型(b和a是待定参数)来拟合y和x的关系.这时,可以对年份序号做变换,即令,得,由表1可得变换后的数据见表2.表2T149162536496481100Y0.529.3633.6132352571912120716822135(1)根据表中数据,建立y关于t的回归方程(系数精确到个位数);(2)根据(1)中得到的回归方程估计2021年的营业收入,以及营业收入首次超过4000亿元的年份.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:.21.(12分)如图,已知圆台下底面圆的直径为,是圆上异于、的点,是圆台上底面圆上的点,且平面平面,,,、分别是、的中点.(1)证明:平面;(2)若直线上平面且过点,试问直线上是否存在点,使直线与平面所成的角和平面与平面的夹角相等?若存在,求出点的所有可能位置;若不存在,请说明理由.22.(10分)已知直线l经过直线,的交点M(1)若直线l与直线平行,求直线l的方程;(2)若直线l与x轴,y轴分别交于A,两点,且M为线段AB的中点,求的面积(其中O为坐标原点)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.2、C【解析】由题可得直线AB的方程,从而可表示出三角形面积,又利用焦点三角形及三角形内切圆的性质,也可表示出三角形面积,则椭圆的离心率即求.【详解】由题知直线AB的方程为,即,∴到直线AB距离,又三角形的内切圆的面积为,则半径为1,由等面积可得,.故选:C.3、A【解析】首先建立平面直角坐标系,然后结合数量积定义求解其轨迹方程即可.【详解】设,以AB中点为坐标原点建立如图所示的平面直角坐标系,则:,设,可得:,从而:,结合题意可得:,整理可得:,即点C的轨迹是以AB中点为圆心,为半径的圆.故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.4、C【解析】转化为圆心在原点半径为1的上半圆和表示恒过定点的直线始终有两个公共点,结合图形可得答案.【详解】令,平方得表示圆心在原点半径为1的上半圆,表示恒过定点的直线,方程有两个不同的解即半圆和直线要始终有两个公共点,如图圆心到直线的距离为,解得,当直线经过时由得,当直线经过时由得,所以实数k的取值范围为.故选:C.5、B【解析】由,求得,得到,结合裂项法求和,即可求解.【详解】数列的前项和满足,当时,;当时,,当时,适合上式,所以,则,所以.故选:B.6、A【解析】求出平移后的直线方程,再利用直线与圆相切并借助点到直线距离公式列式计算作答.【详解】将直线先向右平移一个单位,再向下平移一个单位所得直线方程为,因直线与圆相切,从而得,即,解得或,所以c的值为8或-2.故选:A7、D【解析】取的中点,以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,分析可知点的轨迹是以点、为焦点的椭圆,求出椭圆的方程,可知当点为椭圆与棱或的交点时,点到平面的距离取最小值,由此可求得四棱锥体积的最小值.【详解】取的中点,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,设点,其中,,则、,因为平面,平面,则,所以,,同理可得,所以,,所以点的轨迹是以点、为焦点,且长轴长为的椭圆的一部分,则,,,所以,点的轨迹方程为,点到平面的距离为,当点为曲线与棱或棱的交点时,点到平面的距离取最小值,将代入方程得,因此,四棱锥体积的最小值为.故选:D.8、D【解析】设直线与点确定平面,由题意可得直线与平面相交或平行.分两种情形,画图说明即可.【详解】点是空间中不在直线,上的任意一点,设直线与点确定平面,由题意可得,故直线与平面相交或平行.(1)若直线与平面相交(如图1),记,①若,则不存在过点且与直线,都相交的直线;②若与不平行,则直线即为过点且与直线,都相交的直线.(2)若直线与平面平行(如图2),则不存在过点且与直线,都相交的直线.综上所述,过点至多有一条直线与直线,都相交.故选:D.9、D【解析】由,得在上单调递增,并且由的图象是向上凸,进而判断选项.【详解】由,得在上单调递增,因为,所以,故A不正确;对,,且,总有,可得函数的图象是向上凸,可用如图的图象来表示,由表示函数图象上各点处的切线的斜率,由函数图象可知,随着的增大,的图象越来越平缓,即切线的斜率越来越小,所以,故B不正确;,表示点与点连线的斜率,由图可知,所以D正确,C不正确.故选:D.【点睛】本题考查以数学文化为背景,导数的几何意义,根据函数的单调性比较函数值的大小,属于中档题型.10、C【解析】先求出椭圆的右焦点,从而可求抛物线的准线方程.【详解】,椭圆右焦点坐标为,故抛物线的准线方程为,故选:C.【点睛】本题考查抛物线的几何性质,一般地,如果抛物线的方程为,则抛物线的焦点的坐标为,准线方程为,本题属于基础题.11、C【解析】设直线l的倾斜角为,由题意可得直线l的斜率,即,∵,∴直线l的倾斜角为,故选:.12、C【解析】根据抛物线的概念,可得准线方程为二、填空题:本题共4小题,每小题5分,共20分。13、25【解析】将原问题转化为三进制计算,即可求解【详解】解:由题意可得,从左到右的数字依次为221,即古人一年的收入的钱数为故答案为:14、##【解析】由已知及等比数列的通项公式得到首项和公比,再利用前n项和公式计算即可.【详解】设等比数列的公比为,由已知,得,解得,所以.故答案为:15、18或2##2或18【解析】先由双曲线的方程求出,再利用双曲线的定义列方程求解即可【详解】由,得,则,因为双曲线C:的两焦点分别为,,P为双曲线C上一点,所以,即,所以或,因为,所以或都符合题意,故答案为:18或216、【解析】根据椭圆定义求出其长半轴长,再结合焦点坐标即可计算作答.【详解】因椭圆上一点到两个焦点的距离之和等于,则该椭圆长半轴长,而半焦距,于是得短半轴长b,有,所以的标准方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出圆心和半径,写出圆的方程;(2)求出圆心到直线距离,进而利用垂径定理求出弦长.【小问1详解】由题意可得,圆心为(2,0),半径为2.则圆的方程为;【小问2详解】由(1)可知:圆C半径为,设圆心(2,0)到l的距离为d,则,由垂径定理得:18、(1)的单增区间为,;单减区间为,,;(2)证明见解析.【解析】(1)先求出函数的定义域,求出,由,结合函数的定义域可得出函数的单调区间.(2)当时,定义域R,求出,从而得出单调区间,由当时,,当时,,以及极值点与2的大小关系可得出当时,函数有最大值,然后再证明即可.【详解】解:(1)定义域,可得且且,,可得且3无0无0减无减增无增减所以,的单增区间为,;单减区间为,,.(2)当时,定义域R因为,当时,,当时,,所以的最大值在时取得;由,即,得由,得,或由,得所以在上单调递减,在上单调递增,在上单调递减.当时,,且,由所以当时,函数有最大值.所以,因为,所以,设,则所以化为由,则,则,所以所以19、(1)且(2)【解析】(1)由条件可得,解出即可;(2)由条件可得,解出即可.【小问1详解】若表示焦点在轴上椭圆,则,解得且【小问2详解】若表示焦点在轴上且焦距为的双曲线,则,解得20、(1);(2)估计2021年的营业收入约为2518亿元,估计营业收入首次超过4000亿元的年份为2025届.【解析】(1)根据的公式,将题干中的数据代入,即得解;(2)代入,可估计2021年的营业收入;令,可求解的范围,继而得到的范围,即得解【详解】(1),,故回归方程为.(2)2021年对应的t的值为121,营业收入,所以估计2021年的营业收入约为2518亿元.依题意有,解得,故.因为,所以估计营业收入首次超过4000亿元的年份序号为14,即2025届.21、(1)证明见解析;(2)存在,点与点重合.【解析】(1)证明出,利用面面垂直的性质可证得结论成立;(2)以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,分析可知,设点,利用空间向量法结合同角三角函数的基本关系可得出关于的方程,解出的值,即可得出结论.【小问1详解】证明:因为为圆的一条直径,且是圆上异于、的点,故,又因平面平面,平面平面,平面,所以平面.【小问2详解】解:存在,理由如下:如图,以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,则,,,,,,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北汽车工业学院科技学院《机电一体化系统设计》2022-2023学年第一学期期末试卷
- 有关中国历史地理论文
- 尘推的正确使用方法培训
- 拌和站岗前培训
- 《SE理论与方法论》课件
- 浴场入股合同(2篇)
- 水库出租合同模板(2篇)
- 框架结构主体包工合同(2篇)
- 法务合同范本(2篇)
- 感恩父母课件
- 蛛网膜下腔出血护理PPT课件
- 工艺管道jsa安全风险分析
- 现代艺术体系1951克里斯特勒
- 高一分文理科语文第一课
- 青春期多囊卵巢综合征诊治共识.ppt
- 施工标准化措施
- 维宏系统百问汇总整编
- 深圳市福田区大学生实习基地实习协议.doc
- 商品交易信息管理系统
- (完整版)风电开发协议-分散式风电
- 无机材料学报投稿模板
评论
0/150
提交评论