




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1078|December2021|volume6/natrevmats
REVIEws
LipidnanoparticlesformRNAdelivery
XuchengHou1,TalZaks2✉,RobertLanger3,4✉andYizhouDong
1✉
Abstract|MessengerRNA(mRNA)hasemergedasanewcategoryoftherapeuticagentto
preventandtreatvariousdiseases.Tofunctioninvivo,mRNArequiressafe,effectiveandstabledeliverysystemsthatprotectthenucleicacidfromdegradationandthatallowcellularuptake
andmRNArelease.Lipidnanoparticleshavesuccessfullyenteredtheclinicforthedeliveryof
mRNA;inparticular,lipidnanoparticle–mRNAvaccinesarenowinclinicaluseagainstcoronavirusdisease2019(COVID-19),whichmarksamilestoneformRNAtherapeutics.InthisReview,we
discussthedesignoflipidnanoparticlesformRNAdeliveryandexaminephysiologicalbarriersandpossibleadministrationroutesforlipidnanoparticle–mRNAsystems.Wethenconsiderkeypointsfortheclinicaltranslationoflipidnanoparticle–mRNAformulations,includinggood
manufacturingpractice,stability,storageandsafety,andhighlightpreclinicalandclinicalstudiesoflipidnanoparticle–mRNAtherapeuticsforinfectiousdiseases,cancerandgeneticdisorders.Finally,wegiveanoutlooktofuturepossibilitiesandremainingchallengesforthispromising
technology.
underclinicalevaluationforthepreventionandtreat-mentofvirusinfections,cancerandgeneticdiseases
7
–17
(Tables
1
,2
).
InthisReview,webrieflyoverviewrepresentativelipidnanoparticlesusedformRNAdeliveryanddescribekeystepsinthepreclinicaldevelopmentoflipidnano-particle–mRNAformulations,includingtheovercomingofphysiologicalbarriers,differentadministrationroutes,manufacturingandsafetyprofiles.Finally,wehighlightimportantexamplesoflipidnanoparticle–mRNAformu-lationsinclinicalstudiesandprovidefutureperspectivesforlipidnanoparticlesandmRNAtherapeutics.
DevelopmentoflipidsformRNAdelivery
In1976,nucleicacidswereencapsulatedanddeliveredinpolymericparticles
5
.Later,exogenousmRNAdeliveryintohostcellswasdemonstratedwithliposomes
22
,
23
(fig.
1
).Lipidsareamphiphilicmoleculesthatcontainthreedomains:apolarheadgroup,ahydrophobictailregionandalinkerbetweenthetwodomains.Cationiclipids,ionizablelipidsandothertypesoflipidhavebeenexploredformRNAdelivery(fig.
2
).
Cationiclipids.Cationiclipidshaveaheadgroupwith
permanentpositivecharges
11
,
14
.Forexample,1,2-di-O-octadecenyl-3-trimethylammonium-propane(DOTMA),aquaternaryammoniumlipid,hasbeenappliedformRNAdeliveryinmultiplecelltypes
24
,andwascommercializedasLipofectinincombinationwith1,2-dioleoyl-sn-glycero-3-phosphoethanolamine(DOPE)
24
.1,2-dioleoyl-3-trimethylammonium-propane(DOTAP),abiodegradableanalogueofDOTMA,was
MessengerRNA(mRNA),whichwasdiscoveredbypio-neeringstudiesin1947–1961(ref.
1
),isatransientinter-mediatorbetweengenesandproteins.Bythelate1980s,investigationsofmRNAstructureandfunctionresultedinthedevelopmentofinvitro-transcribed(IVT)mRNA
2
.Sincethefirstproof-of-conceptanimalstudyin1990(ref.
3
),numerousstrategieshavebeenexploredtoamelioratetheinstabilityandimmunogenicityofIVTmRNA
2
,
4
.Additionally,advancesindrugdeliverysystemshaveexpeditedthepreclinicaldevelopmentofmRNAtherapeutics
5
–
17
,providingthebasisformRNAasanewclassofdrug(fig.
1
).
1DivisionofPharmaceutics&Pharmacology,Collegeof
Pharmacy,TheOhioStateUniversity,Columbus,OH,USA.
2Moderna,Inc.,Cambridge,MA,USA.
3DavidH.KochInstituteforIntegrativeCancerResearch,MassachusettsInstituteofTechnology,Cambridge,MA,USA.
4DepartmentofChemical
Engineering,MassachusettsInstituteofTechnology,
Cambridge,MA,USA.
✉e-mail:
tal.zaks@
;
rlanger@
;
dong.525@
/10.1038/
s41578-021-00358-0
mRNAhasshowntherapeuticpotentialinarangeofapplications,includingviralvaccines,proteinreplace-menttherapies,cancerimmunotherapies,cellularreprogrammingandgenomeediting
2
,
4
,
7
–
17
.Toachievetherapeuticeffects,mRNAmoleculeshavetoreachspe-cifictargetcellsandproducesufficientproteinsofinter-est.However,targeteddeliveryandendosomalescaperemainchallengingformRNAdeliverysystems,high-lightingtheneedforsafeandeffectivemRNAdeliverymaterials.
AvarietyofmaterialshavebeendevelopedformRNAdelivery,includinglipids,lipid-likematerials,polymersandproteinderivatives
7
–17
.Inparticular,lipidnanopar-ticleshavebeenthoroughlyinvestigatedandsuccessfullyenteredtheclinicforthedeliveryofsmallmolecules
18
,siRNAdrugs
18
andmRNA
19
–21
.Notably,twoauthorizedcoronavirusdisease2019(COVID-19)vaccines,mRNA-1273(refs
19
,20
)andBNT162b
21
,uselipidnanoparticlestodeliverantigenmRNA.Manyotherlipidnanoparticle–mRNAformulationshavebeendevelopedandare
NATurerevIewS|MATERIALSvolume6|December2021|1079
Reviews
19611961
mRNALipidnanoparticles
DiscoveryofmRNAanditsfunction1
Developmentofliposomes251
19651965
19691969
InvitrotranslationofisolatedmRNAinacell-freesystem252
Developmentofliposome–
1989
1989
Developmentofcationic
LNP–mRNAformulations24
1990
1990
LNPsencapsulatingsmallmolecules
(doxorubicinor
amphotericinB)were
approvedbytheFDA18
Developmentofliposome–mRNAformulationsas
influenzavaccine184
19931993
LNPsencapsulatingdaunorubicinwere
approvedbytheFDAandtheEMA18
1995
1995
1996
1996
2000
2000
LNPsencapsulatingverteporfinwere
approvedbytheFDA18
2001
2001
2005
20092009
LNPsencapsulatingvincristinewere
approvedbytheFDA18
20122012
ClinicaltrialofmRNAtherapeuticsusing
protamine–mRNAformulations
(NCT00204607)
LNPsencapsulatingirinotecanwere
approvedbytheFDA18
20152015
Firstin-humantestofpersonalizedmRNAcancervaccines209
LNPsencapsulatingcytarabinewere
approvedbytheFDA18
20172017
Onpattro(LNPs
encapsulatingsiRNA),thefirstsiRNAdrug,wasapprovedbythe
FDAandtheEMA18
20182018
20202020
1978mRNAformulations22,231978
FreemRNAtranslation
postintramuscularinjectioninmice3
Injectionofvasopressin
19921992
mRNAintoratbrainas
proteinreplacement
therapyfordiabetesinsipidus253
Injectionof
carcinoembryonicantigenmRNAintomousemuscle
asacancervaccine199
FirstclinicaltrialofmRNA-engineereddendriticcells(NCT00004211)
2005
Nucleoside-modifiedmRNAshowsreducedimmunogenicity182
ClinicaltrialofLNP–mRNAformulationsforcancer
20142014
immunotherapies(NCT02316457)
•ClinicaltrialofLNP–mRNAformulationsasinfluenzavaccines(NCT03076385)
•ClinicaltrialofLNP–mRNAformulationsforproteinreplacementtherapies
(NCT03375047)
•mRNA-1273andBNT162b(LNP–mRNAformulations)COVID-19mRNA
vaccinesobtainedauthorizationfromregulatoryagenciesinmultiple
countries
•ClinicaltrialofLNPformulations
deliveringgene-editingcomponentsforgeneticdisorders(NCT04601051)
Fig.1|TimelineofsomekeymilestonesformRNAandlipidnanoparticledevelopment.COVID-19,coronavirus
disease2019;EMA,EuropeanMedicinesAgency;FDA,UnitedStatesFoodandDrugAdministration;LNP,lipidnanoparticle
251
–253
.
alsostudiedformRNAdelivery
25
,andispartofthecommercialagentMegaFectin,togetherwithDOPEorcholesterol.DOTMAandDOTAPhavebothbeenappliedeitheraloneorcombinedwithothermaterialsformRNAdelivery
7
–
17
;forexample,spleen-targetedDOTMA–mRNAlipoplexes(RNA-LPX)havebeendevelopedassystemiccancervaccine
26
.Thesamefor-mulationhasalsobeendesignedasmRNAvaccineforthetreatmentofautoimmuneencephalomyelitis
27
.Thisvaccineinducestheproliferationofantigen-specific
CD4+regulatoryTcells,leadingtoenhancedimmu-nosuppressionandareductionofclinicalsymptomsinmousemodels
27
.DOTAP-basedcationicnanoemulsionscandeliverantigenmRNAagainstviral,bacterialandparasiticinfections
28
–
31
.Moreover,DOTAP–polymerhybridnanoparticlescandelivermRNAmoleculesforthetreatmentofcancer
32
–
37
,infections
38
–
41
andgeneticdisorders
42
.IncorporatingcarbonateapatiteinDOTAP-basedlipidnanoparticlesincreasestheinter-actionbetweentheparticlesandcellularmembranes
43
.
1080|December2021|volume6/natrevmats
Reviews
Thedeliveryefficiencycanfurtherbeimprovedbycon-jugatingfibronectintothelipidnanoparticles,whichisacellularadhesionproteinacceleratingtheendocyticrate
44
.
Dimethyldioctadecylammoniumbromide(DDAB),aquaternaryammoniumlipid,cannotonlyfromcom-plexeswithmRNAbutalsostimulateinnateimmune
responses
45
,therebyservingasimmuneadjuvantformRNAvaccines
46
,
47
.DDABandDOPEconstitutethecommercialproductTransfectAce.Thecommer-cializedagentLipofectamineiscomposedofDOPEand2,3-dioleyloxy-N-[2-(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminiumtrifluoro-acetate(DOSPA),acationiclipidcontainingquaternary
Table1|Representativeclinicaltrialsoflipidnanoparticle–mRNAvaccinesagainstinfectionsandcancer
Name
Disease
Encodedantigen
Administrationroute
ClinicalTidentifier
Phase
Infections
mRNA-1273
SARS-CoV-2
Spike
i.m.
NCT04470427
III(EUA
andCMA)
BNT162b2
SARS-CoV-2
Spike
i.m.
NCT04368728
III(EUA
andCMA)
CVnCoV
SARS-CoV-2
Spike
i.m.
NCT04652102
III
LNP-nCoVsaRNA
SARS-CoV-2
Spike
i.m.
ISRCTN17072692
I
ARCT-021
SARS-CoV-2
Spike
i.m.
NCT04728347
II
ARCoV
SARS-CoV-2
Receptor-bindingdomain
i.m.
ChiCTR2000034112
I
mRNA-1440
InfluenzaH10N8
Haemagglutinin
i.m.
NCT03076385
I
mRNA-1851
InfluenzaH7N9
Haemagglutinin
i.m.
NCT03345043
I
mRNA-1893
Zikavirus
Pre-membraneandenvelopeglycoproteins
i.m.
NCT04064905
I
mRNA-1345
Respiratorysyncytial
virus
Fglycoprotein
i.m.
NCT04528719
I
mRNA-1653
Metapneumovirus
andparainfluenzavirustype3(MPV/PIV3)
MPVandPIV3Fglycoproteins
i.m.
NCT03392389
I
mRNA-1647
Cytomegalovirus
PentamericcomplexandBglycoprotein
i.m.
NCT04232280
II
mRNA-1388
Chikungunyavirus
Chikungunyavirus
antigens
i.m.
NCT03325075
I
CV7202
Rabiesvirus
Gglycoprotein
i.m.
NCT03713086
I
Cancer
mRNA-5671/
V941
Non-small-celllungcancer,colorectalcancer,pancreatic
adenocarcinoma
KRASantigens
i.m.
NCT03948763
I
mRNA-4157
Melanoma
Personalized
neoantigens
i.m.
NCT03897881
II
mRNA-4650
Gastrointestinal
cancer
Personalized
neoantigens
i.m.
NCT03480152
I/II
FixVac
Melanoma
NY-ESO-1,tyrosinase,MAGE-A3,TPTE
i.v.
NCT02410733
I
TNBC-MERIT
Triple-negative
breastcancer
Personalized
neoantigens
i.v.
NCT02316457
I
HARE-40
HPV-positivecancers
HPVoncoproteinsE6
andE7
i.d.
NCT03418480
I/II
RO7198457
Melanoma
Personalized
neoantigens
i.v.
NCT03815058
II
W_ova1
Ovariancancer
Ovariancancerantigens
i.v.
NCT04163094
I
CMA,conditionalmarketingauthorization;EUA,EmergencyUseAuthorization;HPV,humanpapillomavirus;i.d.,intradermal;
i.m.,intramuscular;i.v.,intravenous;KRAS,Kirstenratsarcoma2viraloncogenehomologue;MAGE-A3,melanomaantigenfamilyA;NY-ESO-1,NewYorkesophagealsquamouscellcarcinoma1;SARS-CoV-2,severeacuterespiratorysyndromecoronavirus2;
TPTE,putativetyrosine-proteinphosphatase.
NATurerevIewS|MATERIALSvolume6|December2021|1081
Reviews
Table2|Representativeclinicaltrialsoflipidnanoparticle–mRNAtherapeuticsagainstinfections,
cancerandgeneticdisorders
Name
Disease
Encodedprotein
Administrationroute
ClinicalTrials.govidentifier
Phase
Infections
mRNA-1944
Chikungunyavirus
Antibodyagainst
chikungunyavirus
i.v.
NCT03829384
I
Cancer
mRNA2416
Solidtumours
OX40L
Intratumour
NCT03323398
II
mRNA-2752
Solidtumours
OX40L,IL-23andIL-36γ
Intratumour
NCT03739931
I
MEDI1191
Solidtumours
IL-12
Intratumour
NCT03946800
I
SAR441000
Solidtumours
IL-12sc,IL-15sushi,IFNαandGM-CSF
Intratumour
NCT03871348
I
Geneticdisorders
mRNA-3704
Methylmalonic
acidaemia
Methylmalonyl-CoAmutase
i.v.
NCT03810690
I/II
mRNA-3927
Propionicacidaemia
Propionyl-CoAcarboxylase
i.v.
NCT04159103
I/II
MRT5201
Ornithine
transcarbamylase
deficiency
Ornithinetranscarbamylase
i.v.
NCT03767270
I/II
MRT5005
Cysticfibrosis
Cysticfibrosistransmembrane
conductanceregulator
Inhalation
NCT03375047
I/II
NTLA-2001
Transthyretinamyloidosiswithpolyneuropathy
CRISPR–Cas9geneediting
system
i.v.
NCT04601051
I
CoA,coenzymeA;CRISPR–Cas9,clusteredregularlyinterspacedshortpalindromicrepeats(CRISPR)–CRISPR-associatedprotein9;GM-CSF,granulocyte–macrophagecolony-stimulatingfactor;IFN,interferon;IL,interleukin;i.v.,intravenous.
ammoniumandspermine.LipofectamineprotocolshavebeenoptimizedtodelivermRNAindiversecelltypes,includingalveolarcells,cardiacmusclecellsandpluripotentstemcells
48
–
50
.2-(((((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)carbonyl)amino)-N,N-bis(2-hydroxyethyl)-N-methylethan-1-aminiumbromide(BHEM-Cholesterol)wasdevelopedbymodifyingtheheadstructureof3β-[N-(N,,N,-dimethylaminoethane)-carbamoyl]cholesterol(DC-Cholesterol)withhydroxylgroupstoimprovefusionwithcellularmembranes
51
.LipidnanoparticlescontainingBHEM-CholesterolhavebeenappliedtodelivermRNAencodingclusteredregularlyinterspacedshortpalindromicrepeats(CRISPR)–CRISPR-associatedprotein9(CRISPR–Cas9)andtumourantigens
52
,
53
.Ethylphosphatidylcholine(ePC)wassynthesizedbyintroducingathirdalkyloxygroupintophosphatidyl-cholinestoeliminatetheirnegativecharge.ePC-basedlipidnanoparticleshavebeenappliedformRNA-basedcancerimmunotherapies
54
,
55
andproteinreplacementtherapies
56
.
Ionizablelipids.Ionizablelipidsareprotonatedat
lowpH,whichmakesthempositivelycharged,buttheyremainneutralatphysiologicalpH(refs
7
,
11
,
14
).ThepH-sensitivityofionizablelipidsisbeneficialformRNAdeliveryinvivo,becauseneutrallipidshavelessinteractionswiththeanionicmembranesofbloodcellsand,thus,improvethebiocompatibilityoflipidnanoparticles
7
,
11
,
14
.Trappedinendosomes,inwhich
thepHislowerthanintheextracellularenvironment,ionizablelipidsareprotonatedand,therefore,becomepositivelycharged,whichmaypromotemembranedestabilizationandfacilitateendosomalescapeofthenanoparticles
7
,
11
,
14
Ionizablelipidsoriginallydevel-opedforDNAtransfection,suchas(2S)-2,5-bis(3-aminopropylamino)-N-[2-(dioctadecylamino)acetyl]pentanamide(DOGS;Transfectam)
57
,N1-[2-((1S)-1-[(3-aminopropyl)amino]-4-[di(3-aminopropyl)amino]butylcarboxamido)ethyl]-3,4-di[oleyloxy]-benzamide(MVL5)
58
,DC-Cholesterol
59
andN4-cholesteryl-spermine(GL67)
60
,havealsobeenexploredformRNAdelivery
25
,61
–63
.
Theionizablelipid1,2-dilinoleyloxy-N,N-dimethyl-3-aminopropane(DLin-DMA)wasini-tiallysynthesizedforsiRNAdelivery
64
,anddeliv-eryefficacywasimprovedbymodificationofthelinkerandhydrophobicregions,resultingin2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane(DLin-KC2-DMA)
65
.FurtheroptimizationoftheamineheadgroupofDLin-KC2-DMAledto(6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl4-(dimethylamino)butanoate(DLin-MC3-DMA;MC3),whichisakeydeliverycomponentofOnpattro,thefirstUnitedStatesFoodandDrugAdministration(FDA)-approvedsiRNAdrug
18
,
66
.MC3-basedlipidnanoparticleshavealsobeentestedformRNAther-apeutics,suchasproteinreplacementtherapies
56
,
67
–
72
andantiviraltherapies
73
–
75
.Incorporationofbiode-gradablelipidsimprovesthetolerabilityoflipidnano-particles,byallowingfastmetabolismwhileretainingmRNAdeliveryefficacy.Thebiodegradabilityoflipids
1082|December2021|volume6/natrevmats
Reviews
canbeincreasedbyintroducingestermotifs;forexam-ple,introducingesterbondsinthelinkerandlipidictailsofMC3resultsinthelipiddi((Z)-non-2-en-1-yl)9-((4-(dimethylamino)butanoyl)oxy)heptadecanedio-ate(L319)
76
,whichshowsbetterdeliveryefficacyandfastereliminationfromtheliverandplasmainvivoincomparisonwithMC3(ref.
76
).Similarly,thebiode-gradablelipidsheptadecan-9-yl8-((2-hydroxyethyl)(8-(nonyloxy)-8-oxooctyl)amino)octanoate(Lipid5)
77
,heptadecan-9-yl8-((2-hydroxyethyl)(6-oxo-6-(unde-cyloxy)hexyl)amino)octanoate(LipidH(SM-102))
78
and((4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate)(ALC-0315)
79
havebetterinvivodeliveryefficacyandpharmacokineticsthanMC3.Ofnote,SM-102andALC-0315aretheionizabledeliv-erycomponentsinthemRNA-1273andBNT162bCOVID-19vaccines,respectively
17
.Biodegradablelipidscanalsobemadeofbothesteranddisulfidemotifs
80
–85
.Cleavageofthedisulfidebondsthendrivesanintrapar-ticlenucleophilicattackontheesterlinker,acceleratingtheirdegradation
80
–85
.
Acombinatoriallibraryhasbeendesignedthatcontainslipid-likematerialswithdifferenthydrophilicgroupsandmultiplelipidictails,highlightingthechem-icaldiversityofionizablelipids
86
.Manylipid-likemate-rials,suchas1,1′-((2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl)amino)ethyl)piperazin-1-yl)ethyl)azanediyl)bis(dodecan-2-ol)(C12-200)
87
,tetrakis(8-methylnonyl)3,3′,3″,3川-(((methylazanediyl)bis(propane-3,1diyl))bis(azanetriyl))tetrapropionate(306Oi10)
88
and3,6-bis(4-(bis(2-hydroxydodecyl)amino)butyl)piperazine-2,5-dione(cKK-E12)
89
,havebeendevelopedtodelivermRNAmoleculesinvivo
90
–
100
.Forexample,cKK-E12-basedlipidnanoparticlesareappliedincancerimmunotherapies
94
,
95
andgenomeediting
96
.ReplacingthelipidicchainsofcKK-E12withalkenylaminoalcoholsresultsin3,6-bis(4-(bis((9Z,12Z)-2-hydroxyoctadeca-9,12-dien-1-yl)amino)butyl)piperazine-2,5-dione(OF-02),whichimprovesmRNAdeliveryefficacyinvivo,comparedwithcKK-E12(ref.
101
).FurtheralteringthelinkageofOF-02leadsto(((3,6-dioxopiperazine-2,5-diyl)bis(butane-4,1-diyl))bis(azanetriyl))tetrakis(ethane-2,1-diyl)(9Z,9′Z,9″Z,9川Z,12Z,12′Z,12″Z,12川Z)-tetrakis(octadeca-9,12-dienoate)(OF-Deg-Lin)and(((3,6-dioxopiperazine-2,5-diyl)bis(butane-4,1-diyl))bis(azanetriyl))tetrakis(butane-4,1-diyl)(9Z,9′Z,9″Z,9川Z,12Z,12′Z,12″Z,12川Z)-tetrakis(octadeca-9,12-dienoate)(OF-C4-Deg-Lin),whichallowselectivedeliveryofmRNAintothespleen
102
,
103
.Thelipid-likematerialN1,N3,N5-tris(3-(didodecylamino)propyl)benzene-1,3,5-tricarboxamide(TT3)candelivermRNAmol-eculesencodinghumanfactorIX
104
,CRISPR–Cas9(ref.
105
),aninterleukin-12(IL-12)replicon
106
andsevereacuterespiratorysyndromecoronavirus2(SARS-CoV-2)antigens
107
.Hexa(octan-3-yl)9,9′,9″,9川,9″″,9川″-((((benzene-1,3,5-tricarbonyl)ris(azanediyl))tris(propane-3,1-diyl))tris(azanetriyl))hexanonanoate(FTT5),whichisabiodegradableanalogueofTT3,furtherimprovestheinvivodeliveryefficacyofmRNAencodinghumanfactorVIIIandbaseeditingcomponents
108
.Inaddition,aseriesofaminoglycoside-derived
lipidshavebeensynthesizedasmRNAdeliverymaterials
109
–112
.
ZwitterionicionizablelipidscanalsobeappliedformRNAdelivery
56
,
113
–
116
;forexample,lipidscomposedofapH-switchablezwitterionandthreehydropho-bictailsassembleintoaconeintheendosomalacidicenvironment,enablingmembranehexagonaltrans-formationandallowingthemtoleavetheendosome.Thus,lipidnanoparticle–mRNAformulationsbasedonzwitterionicionizablelipidscanescapetheendosome,leadingtoefficientproteinexpressionandgenomeedit-inginvivo
114
.Inadditiontofunctioningasadeliverycomponent,lipidscanhavetherapeuticeffectssyner-gisticwithmRNA-encodedproteins
117
–
119
.Forexam-ple,lipidswithaheterocyclicamineasheadgroupcanactivatethestimulatorofinterferongenes(STING)signallingpathwayindendriticcells
117
.Theselipids,aspartofanmRNAvaccine,inducepotentcytolyticTlymphocyteresponsesandinhibittumourgrowthinmousemodels
117
.Paclitaxel-conjugatedlipidsencapsu-latingtumoursuppressormRNAcanbeappliedtointe-gratechemotherapyandgenetherapyfortriple-negativebreastcancer
118
.
Othertypesoflipid.Inadditiontocationicorionizable
lipids,lipidnanoparticle–mRNAformulationstypicallycontainotherlipidcomponents,suchasphospholip-ids(forexample,phosphatidylcholineandphosphati-dylethanolamine),cholesterolorpolyethyleneglycol(PEG)-functionalizedlipids(PEG-lipids)
7
,
14
,
17
.Theselipidscanimprovenanoparticleproperties,suchasparticlestability,deliveryefficacy,tolerabilityandbiodistribution
7
,
14
,
17
.Forexample,1,2-distearoyl-sn-glycero-3-phosphocholine(DSPC),aphosphatidylcho-linewithsaturatedtails,hasameltingtemperatureof~54°CandacylindricalgeometrythatallowsDSPCmoleculestoformalamellarphase,whichstabilizesthestructureoflipidnanoparticles
120
.DSPChasbeenusedinthemRNA-1273andBNT162b2COVID-19vaccines
17
.DOPEisaphosphoethanolaminewithtwounsaturatedtails,whichhasameltingtemperatureof~30°Candaconicalshape
120
.DOPEtendstoadoptaninvertedhexagonalH(II)phase,whichdestabilizesendosomalmembranesandfacilitatesendosomalescapeoflipidnanoparticles
90
,120
.UsingDNAbarcode-labelledoligonucleotides,thedistributionofdifferentlipidnanoparticleformulationscanbeanalysedinahigh-throughputmannerinvivo
121
,forexample,toquantifytargeteddeliveryofnucleicacidsinmultipletissues
121
.Basedonthismethod,aseriesofphosphatidylcholinescontainingconstrainedadamantylgroupshasbeenexploredformRNAdelivery,includinganalysisofdistributionindifferentcelltypes
122
.
Cholesterolcanenhanceparticlestabilitybymodu-latingmembraneintegrityandrigidity
7
,14
,17
.Themolecu-largeometryofcholesterolderivativescanfurtheraffectdeliveryefficacyandbiodistributionoflipidnanopar-ticles.Forexample,cholesterolanalogueswithC-24alkylphytosterolsincreasetheinvivodeliveryefficacyoflipidnanoparticle–mRNAformulations
123
.Here,thelengthofthehydrophobictailsofthecholesterolana-logues,theflexibilityofsterolringsandthepolarityof
NATurerevIewS|MATERIALSvolume6|December2021|1083
Reviews
Cationiclipids
ONO
DOTMA
O
O
cN
O
O
DOTAP
Ionizablelipids
O
N
O
DLin-MC3-DMA
N
HOO
O
OO
ALC-0315
N
HOO
O
O
O
LipidH(SM-102)
OO
N
N
N
A2-Iso5-2DC18
O
HNO·S
八人ccSC
O
cNNiiOCS·S
OO·S
S
BAME-O16B
NiP
O
HCCOO·O
9A1P9
NH2
O
NH
HN
H2N
N
HN
O
O
DOSPAO
OO
O-P·OO
N
O
O
ePC
HOOH
OH
N
OH
N
N
N
N
OH
OH
C12-200
O
NH
HN人
N
OHN
OHOOH
cKK-E12
O
O
O
N
O
O
NH
OO
O
N
HN人
O
O
OF-Deg-Lin
O
O
O
O
N
N
N
O
O
O
O
306Oi10
O
N
HN
O
O
HN
N
N
NH
TT3
O
O
O
O
N
HN
O
O
O
O
O
O
O
N
N
HN
NH
O
O
FTT5
O
O
Othertypesoflipids
O
O
O
O
+-c·P·
O
O
O
OO
H3N
O
N
O
OO
O-P-OO
DOPE
DSPC
O
O
N
OO
O
O
O
45
O45
ALC-0159
O
PEG2000-DMG
◆
◆
◆
◆
H
H
H
H
OH
H
H
H
H
Br
O
O
H
IH
lIH
H
H
N
IH
H
-N
HO
O
NH
lIH
HO
NOH
HO
Cholesterol
BHEM-Cholesterol
DC-Cholesterol
ß-sitosterol
1084|December2021|volume6/natrevmats
Reviews
◀Fig.2|ChemicalstructuresoflipidsandlipidderivativesusedformRNAdelivery.
306Oi10,tetrakis(8-methylnonyl)3,3′,3″,3川-(((methylazanediyl)bis(propane-3,1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度解除劳动合同经济补偿及社会保险衔接协议
- 二零二五年度能源互联网合同管理制度及智能调度流程
- 二零二五年度铁路运输安全责任协议书
- 2025年度汽车维修店汽车美容装潢业务转让合同
- 2025年度美甲店转让合同含店铺装修升级及开业庆典策划
- 《睡谷的传说》THE LEGEND OF SLEEPY HOLLOW小说英文原版电子版
- 2025年杭州驾校考试货运从业资格证考试题库
- 2025年新余道路运输从业资格证考试内容是什么
- 感谢领导发言稿
- 2025年宣城道路运输从业人员资格考试内容有哪些
- 建筑挡烟垂壁设计图集
- 排水管道施工组织设计排水管道施工组织设计排水施工排水管道施工施工设计
- 人工智能科普教育活动方案设计
- 第3课中古时期的西欧(教学课件)-【中职专用】《世界历史》同步课堂(同课异构)(高教版2023•基础模块)
- 2024未来会议:AI与协作前沿趋势白皮书
- 2024年广东普通专升本《公共英语》完整版真题
- 建筑工程夜间施工方案
- 国家中长期科技发展规划(2021-2035)
- 中国民族音乐的宫庭音乐
- 单原子催化剂的合成与应用
- 水利工程施工验收规范对工程监理单位的要求
评论
0/150
提交评论