江苏省无锡市南长实验、侨谊教育集团2024-2025学年数学九上开学经典模拟试题【含答案】_第1页
江苏省无锡市南长实验、侨谊教育集团2024-2025学年数学九上开学经典模拟试题【含答案】_第2页
江苏省无锡市南长实验、侨谊教育集团2024-2025学年数学九上开学经典模拟试题【含答案】_第3页
江苏省无锡市南长实验、侨谊教育集团2024-2025学年数学九上开学经典模拟试题【含答案】_第4页
江苏省无锡市南长实验、侨谊教育集团2024-2025学年数学九上开学经典模拟试题【含答案】_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页江苏省无锡市南长实验、侨谊教育集团2024-2025学年数学九上开学经典模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3 B. C. D.42、(4分)如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,那么CD的长是()A.2 B.3 C.1 D.1.53、(4分)以下列各组数为一个三角形的三边长,能构成直角三角形的是().A.2,3,4 B.4,6,5 C.14,13,12 D.7,25,244、(4分)已知,则有()A. B. C. D.5、(4分)如图,在平行四边形ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=3cm,则AD的长是()A.3cm B.6cm C.9cm D.12cm6、(4分)如图,,,,则的度数为()A. B. C. D.7、(4分)已知平行四边形中,,如果添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是()A. B. C. D.8、(4分)如图,矩形的周长是28,点是线段的中点,点是的中点,的周长与的周长差是2(且),则的周长为()A.12 B.14 C.16 D.18二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为__.10、(4分)如图,在□ABCD中,AB=10,AD=8,AC⊥BC.则□ABCD的面积是__________.11、(4分)为了解宿迁市中小学生对春节联欢晚会语言类节目喜爱的程度,这项调查采用__________方式调查较好(填“普查”或“抽样调查”).12、(4分)直线l与直线y=3﹣2x平行,且在y轴上的截距是﹣5,那么直线l的表达式是_____.13、(4分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.若△BCD是等腰三角形,则四边形BDFC的面积为_______________。

三、解答题(本大题共5个小题,共48分)14、(12分)已知:如图,一块Rt△ABC的绿地,量得两直角边AC=8cm,BC=6cm.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8cm为直角边长的直角三角形,求扩充等腰△ABD的周长.(1)在图1中,当AB=AD=10cm时,△ABD的周长为.(2)在图2中,当BA=BD=10cm时,△ABD的周长为.(3)在图3中,当DA=DB时,求△ABD的周长.15、(8分)如图,在平行四边形ABCD中,点F在AD上,且AF=AB,AE平分∠BAD交BC于点E,连接EF,BF,与AE交于点O.(1)求证:四边形ABEF是菱形;(2)若四边形ABEF的周长为40,BF=10,求AE的长及四边形ABEF的面积.16、(8分)为了调查甲,乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一、表二中的空,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:甲:394,400,408,406,410,409,400,400,393,395乙:402,404,396,403,402,405,397,399,402,398整理数据:表一频数种类质量()甲乙____________003310________________________130分析数据:表二种类甲乙平均数401.5400.8中位数____________402众数400____________方差36.858.56得出结论:包装机分装情况比较好的是______(填甲或乙),说明你的理由.17、(10分)如图,平面直角坐标系中,直线分别交x轴、y轴于A、B两点(AOAB)且AO、AB的长分别是一元二次方程x23x20的两个根,点C在x轴负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.18、(10分)先化简,再求值:÷(a+),其中a=﹣1.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某种细菌的直径约为0.00000002米,用科学记数法表示该细菌的直径约为____米.20、(4分)如图所示,已知AB=6,点C,D在线段AB上,AC=DB=1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.21、(4分)某种服装原价每件80元,经两次降价,现售价每件1.8元,这种服装平均每次降价的百分率是________。22、(4分)已知一次函数图像不经过第一象限,求m的取值范围是__________.23、(4分)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________.二、解答题(本大题共3个小题,共30分)24、(8分)已知点A(2,0)在函数y=kx+3的图象上,(1)求该函数的表达式;(2)求该函数图象与坐标轴围成的三角形的面积.25、(10分)如图,在平面直角坐标系中,已知的三个顶点的坐标分别为.(1)将先向右平移4个单位长度,再向上平移2个单位长度,得到,画出;(2)与关于原点成中心对称,画出;(3)和关于点成中心对称,请在图中画出点的位置.26、(12分)(1)解不等式组:.(2)解方程:.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,故选D.本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.2、A【解析】

在Rt△AEC中,由于=,可以得到∠1=∠1=30°,又AD=BD=4,得到∠B=∠1=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵=,∴∠1=∠1=30°,∵AD=BD=4,∴∠B=∠1=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=AD=1.故选A.本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.3、D【解析】分析:根据勾股定理的逆定理,对四个选项中的各组数据分别进行计算,如果三角形的三条边符合a2+b2=c2,则可判断是直角三角形,否则就不是直角三角形.解答:解:∵72+242=49+576=625=1.∴如果这组数为一个三角形的三边长,能构成直角三角形.故选D.4、A【解析】

求出m的值,求出2)的范围5<m<6,即可得出选项.【详解】m=(-)×(-2),=,

=×3=2=,

∵,

∴5<<6,

即5<m<6,

故选A.本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<<6,题目比较好,难度不大.5、B【解析】

根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD的中位线,则AD=2OE,问题得解.【详解】解:∵四边形ABCD为平行四边形,

∴BO=DO,

∵点E是AB的中点,

∴OE为△ABD的中位线,

∴AD=2OE,

∵OE=3cm,

∴AD=6cm.

故选B.本题考查了平行四边形的性质、三角形的中位线定理,是基础知识比较简单,熟记平行四边形的各种性质是解题关键.6、A【解析】

由,易求,再根据,易求,于是根据进行计算即可.【详解】,,,又,,,,.故选:.本题主要考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.7、C【解析】

由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:C.本题考查正方形的判定.正方形的判定方法有:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角;③先判定四边形是平行四边形,再用1或2进行判定.8、A【解析】

设AB=n,BC=m,构建方程组求出m,n,利用勾股定理求出AC,利用三角形中位线定理求出OP即可解决问题.【详解】解:设AB=n,BC=m,由题意:,∴,∵∠B=90°,∴,∵AP=PD=4,OA=OC=5,∴OP=CD=3,∴△AOP的周长为3+4+5=12,故选A.本题考查矩形的性质,勾股定理,三角形的中位线定理等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.二、填空题(本大题共5个小题,每小题4分,共20分)9、答案为:y=﹣2x+3.【解析】【分析】设直线l的函数解析式为y=kx+b,先由平行关系求k,再根据交点求出b.【详解】设直线l的函数解析式为y=kx+b,因为,直线l与直线y=﹣2x+1平行,所以,y=﹣2x+b,因为,与直线y=﹣x+2的交点纵坐标为1,所以,1=﹣x+2,x=1所以,把(1,1)代入y=-2x+b,解得b=3.所以,直线l的函数解析式为:y=﹣2x+3.故答案为:y=﹣2x+3.【点睛】本题考核知识点:一次函数解析式.解题关键点:熟记一次函数的性质.10、1【解析】

先根据平行四边形的性质求出BC的长,再根据勾股定理及三角形的面积公式解答即可.【详解】根据平行四边形的性质得AD=BC=8

在Rt△ABC中,AB=10,AD=8,AC⊥BC

根据勾股定理得AC==6,

则S平行四边形ABCD=BC•AC=1,故答案为:1.本题考查了平行四边形的对边相等的性质和勾股定理,正确求出AC的长是解题的关键.11、抽样调查【解析】分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.详解:为了解宿迁市中小学生对中华古诗词喜爱的程度,因为人员多、所费人力、物力和时间较多,所以适合采用的调查方式是抽样调查.故答案为抽样调查.点睛:本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12、y=﹣2x﹣1【解析】

因为平行,所以得到两个函数的k值相同,再根据截距是-1,可得b=-1,即可求解.【详解】∵直线l与直线y=3﹣2x平行,∴设直线l的解析式为:y=﹣2x+b,∵在y轴上的截距是﹣1,∴b=﹣1,∴y=﹣2x﹣1,∴直线l的表达式为:y=﹣2x﹣1.故答案为:y=﹣2x﹣1.该题主要考查了一次函数图像平移的问题,13、5或1.【解析】

先证明四边形BDFC是平行四边形;当△BCD是等腰三角形求面积时,需分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=5,然后求出DG=3,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾.【详解】证明:∵∠A=∠ABC=90°,

∴BC∥AD,

∴∠CBE=∠DFE,

在△BEC与△FED中,∴△BEC≌△FED,

∴BE=FE,

又∵E是边CD的中点,

∴CE=DE,

∴四边形BDFC是平行四边形;(1)BC=BD=5时,由勾股定理得,AB===,

所以,四边形BDFC的面积=5×=5;

(2)BC=CD=5时,过点C作CG⊥AF于G,则四边形AGCB是矩形,

所以,AG=BC=5,

所以,DG=AG-AD=5-2=3,由勾股定理得,CG===4,

所以,四边形BDFC的面积=4×5=1;

(3)BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾,此时不成立;

综上所述,四边形BDFC的面积是5或1.故答案为:5或1.本题考查平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.三、解答题(本大题共5个小题,共48分)14、(1)32m;(2)(20+4)m;(3)【解析】

(1)利用勾股定理得出DC的长,进而求出△ABD的周长;

(2)利用勾股定理得出AD的长,进而求出△ABD的周长;

(3)首先利用勾股定理得出DC、AB的长,进而求出△ABD的周长.【详解】:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,

∴则△ABD的周长为:10+10+6+6=32(m).

故答案为:32m;

(2)如图2,当BA=BD=10m时,

则DC=BD-BC=10-6=4(m),

则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;

故答案为:(20+4)m;

(3)如图3,∵DA=DB,

∴设DC=xm,则AD=(6+x)m,

∴DC2+AC2=AD2,

即x2+82=(6+x)2,

解得;x=

∵AC=8m,BC=6m,

∴AB=10m,

故△ABD的周长为:AD+BD+AB=2此题主要考查了勾股定理的应用,根据题意熟练应用勾股定理是解题关键.15、(1)见解析;(2)AE=10,四边形ABEF的面积=50.【解析】

(1)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由AF=AB得出BE=AF,即可得出结论.(2)根据菱形的性质可得AB=10,AE⊥BF,BO=FB=5,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.菱形的面积=对角线乘积的一半.【详解】(1)证明∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,且AF=AB,∴BE=AF,又∵BE∥AF,∴四边形ABEF是平行四边形,∵AF=AB,∴四边形ABEF是菱形;(2)∵四边形ABEF为菱形,且周长为40,BF=10∴AB=BE=EF=AF=10,AE⊥BF,BO=FB=5,AE=2AO,在Rt△AOB中,AO=,∴AE=2AO=10.∴四边形ABEF的面积=BF•AE=×10×10=50本题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.16、整理数据:3,1,5;分析数据:400,402;得出结论:乙,理由详见解析.【解析】

整理数据:根据所给的数据填写表格一即可;分析数据:根据中位数、众数的定义求解即可;得出结论:结合表二中的数据解答即可.【详解】整理数据:表一中,甲组:393≤x<396的有3个,405≤x<408的有1个;乙组:402≤x<405的有5个;故答案为:3,1,5;分析数据:表二中,甲组:把10个数据按照从小到大顺序排列为:393,394,395,400,400,400,406,408,409,410,中位数为中间两个数据的平均数==400,乙组:出现次数最多的数据是402,∴众数是402;故答案为:400,402;得出结论:包装机分装情况比较好的是乙;理由如下:由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙(答案不唯一,合理即可).本题考查了众数、中位数以及方差,掌握众数、中位数以及方差的定义及数据的整理是解题的关键.17、(1)A(1,0),C(-3,0);(2)(3)存在,点Q的坐标为(-1,0),(1,2),(1,-2),(1,).【解析】

(1)根据方程求出AO、AB的长,再由AB:AC=1:2求出OC的长,即可得到答案;(2)分点M在CB上时,点M在CB延长线上时,两种情况讨论S与t的函数关系式;(3)分AQ=AB,BQ=BA,BQ=AQ三种情况讨论可求点Q的坐标.【详解】(1)x23x20,(x-1)(x-2)=0,∴x1=1,x2=2,∴AO=1,AB=2,∴A(1,0),,∵AB:AC=1:2,∴AC=2AB=4,∴OC=AC-OA=4-1=3,∴C(-3,0).(2)∵,∴,∵,∴,∴△ABC是直角三角形,且∠ABC=90,由题意得:CM=t,BC=,当点M在CB上时,,②当点M在CB延长线上时,(t>).综上,.(3)存在,①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,∴Q1(-1,0),在菱形ABP2Q2中,AQ2=AB=2,∴Q2(1,2),在菱形ABP3Q3中,AQ3=AB=2,∴Q3(1,-2);②当AB为菱形的对角线时,如图所示,设菱形的边长为x,则在Rt△AP4O中,,解得x=,∴Q4(1,).综上,平面内满足条件的点Q的坐标为(-1,0),(1,2),(1,-2),(1,).此题考查一次函数的综合运用、解一元二次方程,解题过程中注意分类讨论.18、,【解析】

先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算.【详解】解:将代入上式有原式=.故答案为:;.本题主要考查了分式的化简求值和二次根式的运算,其中熟练掌握分式混合运算法则是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】试题解析:0.00000002=2×10-8.点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.20、1【解析】

分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN==1,∴点G移动路径的长是1,故答案为:1.本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.21、10%【解析】

设这种服装平均每件降价的百分率是x,则降一次价变为80(1-x),降两次价变为80(1-x)2,而这个值等于1.8,从而得方程,问题得解.【详解】解:设这种服装平均每件降价的百分率是x,由题意得

80(1-x)2=1.8

∴(1-x)2=0.81

∴1-x=0.9或1-x=-0.9

∴x=10%或x=1.9(舍)

故答案为10%.本题是一元二次方程的基本应用题,明白降两次价变为原来的(1-x)2倍是解题的关键.22、1<m≤2【解析】【分析】一次函数图像不经过第一象限,则一次函数与y轴的交点在y轴的负半轴或原点.【详解】∵图象不经过第一象限,即:一次函数与y轴的交点在y轴的负半轴或原点,∴1-m<0,m-2≤0∴m的取值范围为:1<m≤2故答案为:1<m≤2【点睛】本题考核知识点:一次函数的图象.解题关键点:理解一次函数的性质.23、【解析】

设B的坐标为(2a,2b),E点坐标为(x,2b),D点坐标为(2a,y),因为D、E、M在反比例函数图象上,则ab=k,2bx=k,2ay=k,根据四边形ODBE的面积列式,求得k值,再由2bx×2ay=4abxy=k2=9,求得xy的值,然后根据所求的结果求出△BED的面积,则△ODE的面积就是四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论