2025届安徽省宿州市十三所重点中学数学高三上期末复习检测模拟试题含解析_第1页
2025届安徽省宿州市十三所重点中学数学高三上期末复习检测模拟试题含解析_第2页
2025届安徽省宿州市十三所重点中学数学高三上期末复习检测模拟试题含解析_第3页
2025届安徽省宿州市十三所重点中学数学高三上期末复习检测模拟试题含解析_第4页
2025届安徽省宿州市十三所重点中学数学高三上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省宿州市十三所重点中学数学高三上期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是()A. B. C. D.2.设正项等比数列的前n项和为,若,,则公比()A. B.4 C. D.23.集合的子集的个数是()A.2 B.3 C.4 D.84.一个几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.5.若向量,,则与共线的向量可以是()A. B. C. D.6.已知数列为等比数列,若,且,则()A. B.或 C. D.7.设集合,,若,则()A. B. C. D.8.函数的部分图象大致为()A. B.C. D.9.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为()A. B. C. D.10.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?()A. B. C. D.11.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是(

)A. B. C. D.12.定义在上的奇函数满足,若,,则()A. B.0 C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线的左焦点为,过点且倾斜角为45°的直线与双曲线的两条渐近线顺次交于,两点若,则的离心率为________.14.已知集合,其中,.且,则集合中所有元素的和为_________.15.在区间内任意取一个数,则恰好为非负数的概率是________.16.已知全集,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为,求λ的值.18.(12分)已知,,求证:(1);(2).19.(12分)如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.(1)求证:VA∥平面BDE;(2)求证:平面VAC⊥平面BDE.20.(12分)已知函数.(Ⅰ)求在点处的切线方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有两个实数根,且,证明:.21.(12分)(Ⅰ)证明:;(Ⅱ)证明:();(Ⅲ)证明:.22.(10分)已知都是大于零的实数.(1)证明;(2)若,证明.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由题可知,可转化为曲线与有两个公共点,可转化为方程有两解,构造函数,利用导数研究函数单调性,分析即得解【详解】函数的图象上两点,关于直线的对称点在上,即曲线与有两个公共点,即方程有两解,即有两解,令,则,则当时,;当时,,故时取得极大值,也即为最大值,当时,;当时,,所以满足条件.故选:D【点睛】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.2、D【解析】

由得,又,两式相除即可解出.【详解】解:由得,又,∴,∴,或,又正项等比数列得,∴,故选:D.【点睛】本题主要考查等比数列的性质的应用,属于基础题.3、D【解析】

先确定集合中元素的个数,再得子集个数.【详解】由题意,有三个元素,其子集有8个.故选:D.【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.4、A【解析】

根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题.5、B【解析】

先利用向量坐标运算求出向量,然后利用向量平行的条件判断即可.【详解】故选B【点睛】本题考查向量的坐标运算和向量平行的判定,属于基础题,在解题中要注意横坐标与横坐标对应,纵坐标与纵坐标对应,切不可错位.6、A【解析】

根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.7、A【解析】

根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【详解】依题意可知是集合的元素,即,解得,由,解得.【点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.8、B【解析】

图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。【详解】,故奇函数,四个图像均符合。当时,,,排除C、D当时,,,排除A。故选B。【点睛】图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值。9、A【解析】

利用计算即可,其中表示事件A所包含的基本事件个数,为基本事件总数.【详解】从7本作业本中任取两本共有种不同的结果,其中,小明取到的均是自己的作业本有种不同结果,由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为.故选:A.【点睛】本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题.10、D【解析】

设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,,结合等比数列的性质可求出答案.【详解】设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,,.故选:D.【点睛】本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.11、A【解析】=,当时时,单调递减,时,单调递增,且当,当,

当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.12、C【解析】

首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设直线的方程为,与联立得到A点坐标,由得,,代入可得,即得解.【详解】由题意,直线的方程为,与联立得,,由得,,从而,即,从而离心率.故答案为:【点睛】本题考查了双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.14、2889【解析】

先计算集合中最小的数为,最大的数,可得,求和即得解.【详解】当时,集合中最小数;当时,得到集合中最大的数;故答案为:2889【点睛】本题考查了数列与集合综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.15、【解析】

先分析非负数对应的区间长度,然后根据几何概型中的长度模型,即可求解出“恰好为非负数”的概率.【详解】当是非负数时,,区间长度是,又因为对应的区间长度是,所以“恰好为非负数”的概率是.故答案为:.【点睛】本题考查几何概型中的长度模型,难度较易.解答问题的关键是能判断出目标事件对应的区间长度.16、【解析】

利用集合的补集运算即可求解.【详解】由全集,,所以.故答案为:【点睛】本题考查了集合的补集运算,需理解补集的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)1【解析】

(1)先根据题意建立空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2,由AN=λ,设N(0,λ,0)(0≤λ≤4),则=(-1,λ-1,-2),再求得平面PBC的一个法向量,利用直线MN与平面PBC所成角的正弦值为,由|cos〈,〉|===求解.【详解】(1)因为PA⊥平面ABCD,且AB,AD⊂平面ABCD,所以PA⊥AB,PA⊥AD.又因为∠BAD=90°,所以PA,AB,AD两两互相垂直.分别以AB,AD,AP为x,y,z轴建立空间直角坐标系,则由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因为M为PC的中点,所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以异面直线AP,BM所成角的余弦值为.(2)因为AN=λ,所以N(0,λ,0)(0≤λ≤4),则=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).设平面PBC的法向量为=(x,y,z),则即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一个法向量.因为直线MN与平面PBC所成角的正弦值为,所以|cos〈,〉|===,解得λ=1∈[0,4],所以λ的值为1.【点睛】本题主要考查了空间向量法研究空间中线线角,线面角的求法及应用,还考查了转化化归的思想和运算求解的能力,属于中档题.18、(1)见解析;(2)见解析.【解析】

(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论.【详解】(1)∵,∴,当且仅当a=b=c等号成立,∴;(2)由基本不等式,∴,同理,,∴,当且仅当a=b=c等号成立∴.【点睛】本题考查不等式的证明,考查用基本不等式证明不等式成立.解题关键是发现基本不等式的形式,方法是综合法.19、(1)见解析(2)见解析【解析】

(1)连结OE,证明VA∥OE得到答案.(2)证明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到证明.【详解】(1)连结OE.因为底面ABCD是菱形,所以O为AC的中点,又因为E是棱VC的中点,所以VA∥OE,又因为OE⊂平面BDE,VA⊄平面BDE,所以VA∥平面BDE;(2)因为VO⊥平面ABCD,又BD⊂平面ABCD,所以VO⊥BD,因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC⊂平面VAC,所以BD⊥平面VAC.又因为BD⊂平面BDE,所以平面VAC⊥平面BDE.【点睛】本题考查了线面平行,面面垂直,意在考查学生的推断能力和空间想象能力.20、(Ⅰ);(Ⅱ);(Ⅲ)证明见解析【解析】

(Ⅰ)根据导数的几何意义求解即可.(Ⅱ)求导分析函数的单调性,并构造函数根据单调性分析可得只能在处取得最小值求解即可.(Ⅲ)根据(Ⅰ)(Ⅱ)的结论可知,在上恒成立,再分别设的解为、.再根据不等式的性质证明即可.【详解】(Ⅰ)由题,故.且.故在点处的切线方程为.(Ⅱ)设恒成立,故.设函数则,故在上单调递减且,又在上单调递增.又,即且,故只能在处取得最小值,当时,此时,且在上,单调递减.在上,单调递增.故,满足题意;当时,此时有解,且在上单调递减,与矛盾;当时,此时有解,且在上单调递减,与矛盾;故(Ⅲ).由(Ⅰ),在上单调递减且,又在上单调递增,故最多一根.又因为,,故设的解为,因为,故.所以在递减,在递增.因为方程有两个实数根,故.结合(Ⅰ)(Ⅱ)有,在上恒成立.设的解为,则;设的解为,则.故,.故,得证.【点睛】本题主要考查了导数的几何意义以及根据函数的单调性与最值求解参数值的问题.同时也考查了构造函数结合前问的结论证明不等式的方法.属于难题.21、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】

运用数学归纳法证明即可得到结果化简,运用累加法得出结果运用放缩法和累加法进行求证【详解】(Ⅰ)数学归纳法证明时,①当时,成立;②当时,假设成立,则时所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论