云南省西畴县一中2025届高三数学第一学期期末调研试题含解析_第1页
云南省西畴县一中2025届高三数学第一学期期末调研试题含解析_第2页
云南省西畴县一中2025届高三数学第一学期期末调研试题含解析_第3页
云南省西畴县一中2025届高三数学第一学期期末调研试题含解析_第4页
云南省西畴县一中2025届高三数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省西畴县一中2025届高三数学第一学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国古代数学名著《九章算术》有一问题:“今有鳖臑(biēnaò),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为()A.平方尺 B.平方尺C.平方尺 D.平方尺2.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A. B. C. D.3.已知函数,若对任意,都有成立,则实数的取值范围是()A. B. C. D.4.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A. B. C. D.5.已知集合,,则()A. B. C. D.6.已知i是虚数单位,则1+iiA.-12+32i7.已知复数满足:(为虚数单位),则()A. B. C. D.8.如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为()A. B. C. D.9.如图所示程序框图,若判断框内为“”,则输出()A.2 B.10 C.34 D.9810.若双曲线的离心率,则该双曲线的焦点到其渐近线的距离为()A. B.2 C. D.111.过圆外一点引圆的两条切线,则经过两切点的直线方程是().A. B. C. D.12.如图是一个几何体的三视图,则这个几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的常数项为__________.14.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.获胜概率—0.40.30.8获胜概率0.6—0.70.5获胜概率0.70.3—0.3获胜概率0.20.50.7—则队获得冠军的概率为______.15.在二项式的展开式中,的系数为________.16.记Sk=1k+2k+3k+……+nk,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)若函数的最大值为,且,求的最小值.18.(12分)已知函数,.(1)讨论的单调性;(2)当时,证明:.19.(12分)已知函数的最大值为2.(Ⅰ)求函数在上的单调递减区间;(Ⅱ)中,,角所对的边分别是,且,求的面积.20.(12分)如图,在四棱锥中,侧棱底面,,,,是棱的中点.(1)求证:平面;(2)若,点是线段上一点,且,求直线与平面所成角的正弦值.21.(12分)如图,三棱柱中,与均为等腰直角三角形,,侧面是菱形.(1)证明:平面平面;(2)求二面角的余弦值.22.(10分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据三视图得出原几何体的立体图是一个三棱锥,将三棱锥补充成一个长方体,此长方体的外接球就是该三棱锥的外接球,由球的表面积公式计算可得选项.【详解】由三视图可得,该几何体是一个如图所示的三棱锥,为三棱锥外接球的球心,此三棱锥的外接球也是此三棱锥所在的长方体的外接球,所以为的中点,设球半径为,则,所以外接球的表面积,故选:A.【点睛】本题考查求几何体的外接球的表面积,关键在于由几何体的三视图得出几何体的立体图,找出外接球的球心位置和半径,属于中档题.2、B【解析】由题,侧棱底面,,,,则根据余弦定理可得,的外接圆圆心三棱锥的外接球的球心到面的距离则外接球的半径,则该三棱锥的外接球的表面积为点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径公式是解答的关键.3、D【解析】

先将所求问题转化为对任意恒成立,即得图象恒在函数图象的上方,再利用数形结合即可解决.【详解】由得,由题意函数得图象恒在函数图象的上方,作出函数的图象如图所示过原点作函数的切线,设切点为,则,解得,所以切线斜率为,所以,解得.故选:D.【点睛】本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.4、D【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.5、B【解析】

求出集合,利用集合的基本运算即可得到结论.【详解】由,得,则集合,所以,.故选:B.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.6、D【解析】

利用复数的运算法则即可化简得出结果【详解】1+i故选D【点睛】本题考查了复数代数形式的乘除运算,属于基础题。7、A【解析】

利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.8、C【解析】

利用正方体将三视图还原,观察可得最长棱为AD,算出长度.【详解】几何体的直观图如图所示,易得最长的棱长为故选:C.【点睛】本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.9、C【解析】

由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,,,;,,,;,,,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.10、C【解析】

根据双曲线的解析式及离心率,可求得的值;得渐近线方程后,由点到直线距离公式即可求解.【详解】双曲线的离心率,则,,解得,所以焦点坐标为,所以,则双曲线渐近线方程为,即,不妨取右焦点,则由点到直线距离公式可得,故选:C.【点睛】本题考查了双曲线的几何性质及简单应用,渐近线方程的求法,点到直线距离公式的简单应用,属于基础题.11、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选.12、A【解析】

由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.则几何体的体积为.故选:.【点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、31【解析】

由二项式定理及其展开式得通项公式得:因为的展开式得通项为,则的展开式中的常数项为:,得解.【详解】解:,则的展开式中的常数项为:.故答案为:31.【点睛】本题考查二项式定理及其展开式的通项公式,求某项的导数,考查计算能力.14、0.18【解析】

根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.【详解】由表中信息可知,胜C的概率为;若B进入决赛,B胜D的概率为,则A胜B的概率为;若D进入决赛,D胜B的概率为,则A胜D的概率为;由相应的概率公式知,则A获得冠军的概率为.故答案为:0.18【点睛】本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.15、60【解析】

直接利用二项式定理计算得到答案.【详解】二项式的展开式通项为:,取,则的系数为.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.16、【解析】

观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.【详解】根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,∴A,A1,解得B,所以A﹣B.故答案为:.【点睛】本题考查了归纳推理,意在考查学生的推理能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)化简得到,分类解不等式得到答案.(2)的最大值,,利用均值不等式计算得到答案.【详解】(1)因为,故或或解得或,故不等式的解集为.(2)画出函数图像,根据图像可知的最大值.因为,所以,当且仅当时,等号成立,故的最小值是3.【点睛】本题考查了解不等式,均值不等式求最值,意在考查学生的计算能力和转化能力.18、(1)见解析;(2)见解析【解析】

(1)求导得,分类讨论和,利用导数研究含参数的函数单调性;(2)根据(1)中求得的的单调性,得出在处取得最大值为,构造函数,利用导数,推出,即可证明不等式.【详解】解:(1)由于,得,当时,,此时在上递增;当时,由,解得,若,则,若,,此时在递增,在上递减.(2)由(1)知在处取得最大值为:,设,则,令,则,则在单调递减,∴,即,则在单调递减∴,∴,∴.【点睛】本题考查利用导数研究函数的单调性和最值,涉及分类讨论和构造新函数,通过导数证明不等式,考查转化思想和计算能力.19、(Ⅰ)(Ⅱ)【解析】

(1)由题意,f(x)的最大值为所以而m>0,于是m=,f(x)=2sin(x+).由正弦函数的单调性可得x满足即所以f(x)在[0,π]上的单调递减区间为(2)设△ABC的外接圆半径为R,由题意,得化简得sinA+sinB=2sinAsinB.由正弦定理,得①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0②将①式代入②,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故20、(1)证明见解析;(2)【解析】

(1)的中点,连接,,证明四边形是平行四边形可得,故而平面;(2)以为原点建立空间坐标系,求出平面的法向量,计算与的夹角的余弦值得出答案.【详解】(1)证明:取的中点,连接,,,分别是,的中点,,,又,,,,四边形是平行四边形,,又平面,平面,平面.(2)解:,,又,故,以为原点,以,,为坐标轴建立空间直角坐标系,则,0,,,0,,,2,,,0,,,2,,是的中点,是的三等分点,,1,,,,,,,,,0,,,2,,设平面的法向量为,,,则,即,令可得,,,,,直线与平面所成角的正弦值为.【点睛】本题考查了线面平行的判定,空间向量与直线与平面所成角的计算,属于中档题.21、(1)见解析(2)【解析】

(1)取中点,连接,,通过证明,得,结合可证线面垂直,继而可证面面垂直.(2)设,建立空间直角坐标系,求出平面和平面的法向量,继而可求二面角的余弦值.【详解】解析:(1)取中点,连接,,由已知可得,,,∵侧面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)设,则,建立如图所示空间直角坐标系,则,,,,,,,,设平面的法向量为,则,令得.同理可求得平面的法向量,∴.【点睛】本题考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者线面角的问题时,常建立空间直角坐标系,通过求面的法向量、线的方向向量,继而求解.特别地,对于线面角问题,法向量与方向向量的余角才是所求的线面角,即两个向量夹角的余弦值为线面角的正弦值.22、(1);(2)见解析;(3)见解析【解析】

(1)需满足恒成立,只需即可;(2)根据的单调性,构造新函数,并令,根据的单调性即可得证;(3)将问题转化为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论