




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届德阳市重点中学数学高一上期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,则=A. B.C. D.2.表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是A. B.C. D.3.如图,水平放置的直观图为,,分别与轴、轴平行,是边中点,则关于中的三条线段命题是真命题的是A.最长的是,最短的是 B.最长的是,最短的是C.最长的是,最短的是 D.最长的是,最短的是4.幂函数,当时为减函数,则实数的值为A.或2 B.C. D.5.已知向量,若与垂直,则的值等于A. B.C.6 D.26.圆的半径和圆心坐标分别为A. B.C. D.7.如果幂函数的图象经过点,则在定义域内A.为增函数 B.为减函数C.有最小值 D.有最大值8.如图,一个直三棱柱形容器中盛有水,且侧棱.若侧面水平放置时,液面恰好过的中点,当底面ABC水平放置时,液面高为()A.6 B.7C.2 D.49.设函数的图象为,关于点A(2,1)的对称图象为,若直线y=b与有且仅有一个公共点,则b的值为A.0 B.-4C.0或4 D.0或-410.在中,,则等于A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.茎叶图表示的是甲,乙两人在5次综合测评中的成绩,记甲,乙的平均成绩分别为a,b,则a,b的大小关系是______12.已知,若,使得,若的最大值为M,最小值为N,则___________.13.若命题,,则的否定为___________.14.函数的单调增区间为________15.已知函数,若,使得,则实数a的取值范围是___________.16.已知平面,,直线,若,,则直线与平面的位置关系为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于不等式.(1)若不等式的解集为,求实数的值;(2)若,成立,求实数的取值范围.18.已知.(1)在直角坐标系中用“五点画图法”画出一个周期内的图象.(要求列表、描点)(2)求函数的最小正周期、对称中心、对称轴方程.19.已知函数.(1)求函数的最小正周期及函数的对称轴方程;(2)若,求函数的单调区间和值域.20.如果函数满足:对定义域内的所有,存在常数,,都有,那么称是“中心对称函数”,对称中心是点.(1)证明点是函数的对称中心;(2)已知函数(且,)的对称中心是点.①求实数的值;②若存在,使得在上的值域为,求实数的取值范围.21.已知函数(1)求函数的最值及相应的的值;(2)若函数在上单调递增,求的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题意,所以.故选B考点:集合的运算2、A【解析】根据正方体的表面积,可求得正方体的棱长,进而求得体对角线的长度;由体对角线为外接球的直径,即可求得外接球的表面积【详解】设正方体的棱长为a因为表面积为24,即得a=2正方体的体对角线长度为所以正方体的外接球半径为所以球的表面积为所以选A【点睛】本题考查了立体几何中空间结构体的外接球表面积求法,属于基础题3、B【解析】由直观图可知轴,根据斜二测画法规则,在原图形中应有,又为边上的中线,为直角三角形,为边上的中线,为斜边最长,最短故选B4、C【解析】∵为幂函数,∴,即.解得:或.当时,,在上为减函数;当时,,在上为常数函数(舍去),∴使幂函数为上的减函数的实数的值.故选C.考点:幂函数的性质.5、B【解析】,所以,则,故选B6、D【解析】半径和圆心坐标分别为,选D7、C【解析】由幂函数的图象经过点,得到,由此能求出函数的单调性和最值【详解】解:幂函数的图象经过点,,解得,,在递减,在递增,有最小值,无最大值故选【点睛】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答8、A【解析】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,由已知条件求出水的体积;当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,故水的体积可以用三角形的面积直接表示出,计算即可得答案【详解】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面是梯形,设△ABC的面积为S,则S梯形=S,水的体积V水=S×AA1=6S,当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,则有V水=Sh=6S,故h=6故选A【点睛】本题考点是棱柱的体积计算,考查用体积公式来求高,考查转化思想以及计算能力,属于基础题9、C【解析】先设图像上任一点以及P关于点的对称点,根据点关于点对称的性质,用p的坐标表示的坐标,再把的坐标代入f(x)的解析式进行整理,求出图象的解析式,通过对解析式值域的分析,再结合直线y=b与有且仅有一个公共点,来确定未知量b的值。【详解】设图像上任一点,且P关于点的对称点,则有,解得,又点在函数的图像上,则有,那么图像的函数为,当时,,,当且仅当时取到等号,此时取到最小值4,直线y=b与只有一个公共点,故b=4,同理当时,,,即,此时取到最大值0,当且仅当x=3时取到等号,直线y=b与只有一个公共点,故b=0.综上,b的值为0或4.故选:C【点睛】利用基本不等式求出函数最值时,要注意函数定义域是否包含取等点,本题是一道函数综合题10、C【解析】分析:利用两角和的正切公式,求出的三角函数值,求出的大小,然后求出的值即可详解:由,则,因为位三角形的内角,所以,所以,故选C点睛:本题主要考查了两角和的正切函数的应用,解答中注意公式的灵活运用以及三角形内角定理的应用,着重考查了推理与计算能力二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分别计算出甲,乙的平均分,从而可比较a,b的大小关系.【详解】易知甲的平均分为,乙的平均分为,所以.故答案为:.12、【解析】作出在上的图象,为的图象与直线y=m交点的横坐标,利用数形结合思想即可求得M和N﹒【详解】作出在上的图象(如图所示)因为,,所以当的图象与直线相交时,由函数图象可得,设前三个交点横坐标依次为、、,此时和最小为N,由,得,则,,,;当的图象与直线相交时,设三个交点横坐标依次为、、,此时和最大为,由,得,则,,;所以.故答案为:.13、,【解析】利用特称命题的否定可得出结论.【详解】命题为特称命题,该命题的否定为“,”.故答案为:,.14、.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由得定义域为,令,则在单调递减,又在单调递减,所以的单调递增区间是.故答案为:.15、【解析】将“对,使得,”转化为,再根据二次函数的性质和指数函数的单调性求得最值代入即可解得结果.【详解】当时,,∴当时,,当时,为增函数,所以时,取得最大值,∵对,使得,∴,∴,解得.故答案为:.16、【解析】根据面面平行的性质即可判断.【详解】若,则与没有公共点,,则与没有公共点,故.故答案为:.【点睛】本题考查面面平行的性质,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)结合一元二次不等式的解集、一元二次方程的根的关系列方程,由此求得的值.(2)对分成可两种情况进行分类讨论,结合判别式求得的取值范围.【详解】(1)关于的不等式的解集为,∴和1是方程的两个实数根,代入得,解得;(2)当时,不等式为,满足题意;当时,应满足,解得;综上知,实数的取值范围是.18、(1)见解析;(2)见解析【解析】(1)列表、描点即可用五点画图法作出函数图像;(2)结合函数的图像,可直接写出其最小正周期,结合正弦函数的性质可得出其对称中心以及对称轴.【详解】(1)列表:0131-11(2)最小正周期为,由得,所以对称中心为;由得,所以对称轴方程为.【点睛】本题主要考查五点作图法,以及三角函数的性质,熟记函数性质即可求解,属于基础题型.19、(1)最小正周期为,对称轴方程为(2)函数在上单调递减,在上单调递增;值域为【解析】(1)先通过降幂公式化简成,再按照周期和对称轴方程进行求解;(2)求出整体的范围,再结合正弦函数的单调性求解单调区间和值域.【小问1详解】;函数的最小正周期为,函数的对称轴方程为;【小问2详解】,,时,函数单调递减,即时,函数在上单调递减;时,函数在单调递增,即时,函数在上单调递增.,函数的值域为.20、(1)见解析;(2)①,②.【解析】(1)求得,根据函数的定义,即可得到函数的图象关于点对称.(2)①根据函数函数的定义,利用,即可求得.②由在上的值域,得到方程组,转化为为方程的两个根,结合二次函数的性质,即可求解.【详解】(1)由题意,函数,可得,所以函数的图象关于点对称.(2)①因为函数(且,)对称中心是点,可得,即,解得(舍).②因为,∴,可得,又因为,∴.所以在上单调递减,由在上的值域为所以,,即,即,即为方程的两个根,且,令,则满足,解得,所以实数的取值范围.【点睛】本题主要考查了函数的新定义,函数的基本性质的应用,以及二次函数的图象与性质的综合应用,其中解答中正确理解函数的新定义,合理利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人家服务合同范本
- 中班社会领域活动方案
- 房屋双方买卖合同
- 车辆挂靠经营协议书
- 交通物流配送优化方案
- 班车租赁合同集锦
- 智能制造模具研发投资合同
- 工程机械施工协议书
- 新能源材料研发投资合同
- Unit 3 Amazing animals第4课时(教学设计)-2024-2025学年人教PEP版(2024)英语三年级上册
- 《中国居民膳食指南》课件
- 银行柜面业务操作流程手册
- 烧烤配方出售合同范例
- 妇科手术麻醉
- Unit1RelationshipsLesson2HowDoWeLikeTeachers'Feedback课件高中英语北师大版选择性
- 库存管理规划
- 灌篮高手培训课件
- 小学生心理健康讲座5
- 贵州省房屋建筑和市政工程标准监理电子招标文件(2023年版)
- 高级职业培训师(三级)职业资格鉴定考试题及答案
- 静脉留置针操作常见的并发症及处理
评论
0/150
提交评论