2025届豫东名校高一数学第一学期期末联考试题含解析_第1页
2025届豫东名校高一数学第一学期期末联考试题含解析_第2页
2025届豫东名校高一数学第一学期期末联考试题含解析_第3页
2025届豫东名校高一数学第一学期期末联考试题含解析_第4页
2025届豫东名校高一数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届豫东名校高一数学第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则错误的是A. B.C. D.2.sin210°·cos120°的值为()A. B.C. D.3.已知关于的方程()的根为负数,则的取值范围是()A. B.C. D.4.定义在上的连续函数有下列的对应值表:01234560-1.2-0.22.1-23.22.4则下列说法正确是A.函数在上有4个零点 B.函数在上只有3个零点C.函数在上最多有4个零点 D.函数在上至少有4个零点5.已知向量,,则A. B.C. D.6.已知集合,,则A∩B中元素的个数为()A.2 B.3C.4 D.57.在高一期中考试中,甲、乙两个班的数学成绩统计如下表:班级人数平均分数方差甲302乙203其中,则甲、乙两个班数学成绩的方差为()A.2.2 B.2.6C.2.5 D.2.48.直线l1的倾斜角,直线l1⊥l2,则直线l2的斜率为A.- B.C.- D.9.函数的图像的一条对称轴是()A. B.C. D.10.图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h,日影长为l.图2是地球轴截面的示意图,虚线表示点A处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬)在某地利用一表高为的圭表按图1方式放置后,测得日影长为,则该地的纬度约为北纬()(参考数据:,)A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则_____.12.如图,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________13.如图所示,中,,边AC上的高,则其水平放置的直观图的面积为______14.写出一个能说明“若函数为奇函数,则”是假命题的函数:_________.15.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.16.如果实数满足条件,那么的最大值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,一个半径为4米的筒车按逆时针方向每分钟转1圈,筒车的轴心O距水面的高度为2米.设筒车上的某个盛水筒W到水面的距离为d(单位:米)(在水面下则d为负数).若以盛水筒W刚浮出水面时开始计算时间,则d与时间t(单位:分钟)之间的关系为.(1)求的值;(2)求盛水筒W出水后至少经过多少时间就可到达最高点?(3)某时刻(单位:分钟)时,盛水筒W在过O点的竖直直线的左侧,到水面的距离为5米,再经过分钟后,盛水筒W是否在水中?18.武威“天马之眼”摩天轮,于2014年5月建成运营.夜间的“天马之眼”摩天轮美轮美奂,绚丽多彩,气势宏大,震撼人心,是武威一颗耀眼的明珠.该摩天轮直径为120米,摩天轮的最高点距地面128米,摩天轮匀速转动,每转动一圈需要t分钟,若小夏同学从摩天轮的最低点处登上摩天轮,从小夏登上摩天轮的时刻开始计时(1)求小夏与地面的距离y(米)与时间x(分钟)的函数关系式;(2)在摩天轮转动一圈的过程中,小夏的高度在距地面不低于98米的时间不少分钟,求t的最小值19.已知函数的图象经过点其中(1)求a的值;(2)若,求x的取值范围.20.如图所示,某市政府决定在以政府大楼O为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R,∠MOP=45°,OB与OM之间的夹角为θ.(1)将图书馆底面矩形ABCD的面积S表示成θ的函数.(2)若R=45m,求当θ为何值时,矩形ABCD的面积S最大?最大面积是多少?(取=1.414)21.已知函数的部分图像如图所示.(1)求函数的解析式;(2)若函数在上取得最小值时对应的角度为,求半径为2,圆心角为的扇形的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】对于,由,则,故正确;对于,,故正确;对于,,故正确;对于,,故错误故选D2、A【解析】直接诱导公式与特殊角的三角函数求解即可.【详解】,故选:A.3、D【解析】分类参数,将问题转化为求函数在的值域,再利用指数函数的性质进行求解.【详解】将化为,因为关于的方程()的根为负数,所以的取值范围是在的值域,当时,,则,即的取值范围是.故选:D.4、D【解析】由表格数据可知,连续函数满足,根据零点存在定理可得,在区间上,至少各有一个零点,所以函数在上至少有个零点,故选D.5、A【解析】因为,故选A.6、B【解析】采用列举法列举出中元素的即可.【详解】由题意,,故中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、D【解析】根据平均数和方差的计算性质即可计算.【详解】设甲、乙两班学生成绩分别为,甲班平均成绩为,乙班平均成绩为,因为甲、乙两班的平均成绩相等,所以甲、乙两班合在一起后平均成绩依然为,因为,同理,∴甲、乙两班合在一起后的方差为:.故选:D.8、C【解析】由题意可得L2的倾斜角等于30°+90°=120°,从而得到L2的斜率为tan120°,运算求得结果【详解】如图:直线L1的倾斜角α1=30°,直线L1⊥L2,则L2的倾斜角等于30°+90°=120°,∴L2的斜率为tan120°=﹣tan60°,故选C【点睛】本题主要考查直线的倾斜角和斜率的关系,体现了数形结合的数学思想,属于基础题9、C【解析】对称轴穿过曲线的最高点或最低点,把代入后得到,因而对称轴为,选.10、B【解析】由题意有,可得,从而可得【详解】由图1可得,又,所以,所以,所以,该地的纬度约为北纬,故选:二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】利用诱导公式求出,再将所求值的式子弦化切,代值计算即得.【详解】因,所以.故答案为:3.12、2【解析】证明平面得到,故与以为直径的圆相切,计算半径得到答案.详解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一个点Q满足PQ⊥QD,即与以为直径的圆相切,,故间的距离为半径,即为1,故.故答案为:213、.【解析】直接根据直观图与原图像面积的关系求解即可.【详解】的面积为,由平面图形的面积与直观图的面积间的关系.故答案为:.14、(答案不唯一)【解析】由题意,只需找一个奇函数,0不在定义域中即可.【详解】由题意,为奇函数且,则满足题意故答案为:15、(答案不止一个)【解析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:16、1【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可【详解】先根据约束条件画出可行域,当直线过点时,z最大是1,故答案为1【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)分钟;(3)再经过分钟后盛水筒不在水中.【解析】(1)先结合题设条件得到,,求得,再利用初始值计算初相即可;(2)根据盛水筒达到最高点时,代入计算t值,再根据,得到最少时间即可;(3)先计算时,根据题意,利用同角三角函数的平方关系求,再由分钟后,进而计算d值并判断正负,即得结果.【详解】解:(1)由题意知,,即,所以,由题意半径为4米,筒车的轴心O距水面的高度为2米,可得:,当时,,代入得,,因为,所以;(2)由(1)知:,盛水筒达到最高点时,,当时,,所以,所以,解得,因为,所以,当时,,所以盛水筒出水后至少经过分钟就可达到最高点;(3)由题知:,即,由题意,盛水筒W在过O点的竖直直线的左侧,知,所以,所以,所以,再经过分钟后,所以再经过分钟后盛水筒不在水中.【点睛】本题的解题关键在于准确求解出三角函数模型的解析式,才能利用三角函数性质解决实际问题,突破难点.18、(1)(2)25【解析】(1)建立坐标系,由得出所求函数关系式;(2)由得出,由余弦函数的性质得出第一圈满足持续的时间,再解不等式得出t的最小值【小问1详解】如图,以摩天轮最低点的正下方的地面处为原点,以地平面所在直线为x轴建立平面直角坐标系,摩天轮的最高点距地面128米,摩天轮的半径为60米,摩天轮的圆心O到地面的距离为68米因为每转动一圈需要t分钟,所以【小问2详解】依题意,可知,即,不妨取第一圈,可得,,持续时间为,即,故t的最小值为2519、(1)(2)【解析】(1)根据函数过点代入解析式,即可求得的值;(2)由(1)可得函数的解析式,结合函数的单调性求出x的取值范围.【详解】解:(1)∵函数的图象经过点,即,可得;(2)由(1)得,即,,【点睛】本题考查待定系数法求函数解析式,以及由指数函数的单调性解不等式,属于基础题.20、(1)S=R2sin-R2,θ∈;(2)当θ=时,矩形ABCD面积S最大,最大面积为838.35m2.【解析】(1)设OM与BC的交点为F,用表示出,,,从而可得面积的表达式;(2)结合正弦函数的性质求得最大值【详解】解:(1)由题意,可知点M为PQ的中点,所以OM⊥AD.设OM与BC的交点为F,则BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rsinθ.所以S=AB·BC=2Rsinθ(Rcosθ-Rsinθ)=R2(2sinθcosθ-2sin2θ)=R2(sin2θ-1+cos2θ)=R2sin-R2,θ∈.(2)因为θ∈,所以2θ+∈,所以当2θ+,即θ=时,S有最大值.Smax=(-1)R2=(-1)×452=0.414×2025=838.35(m2).故当θ=时,矩形ABCD的面积S最大,最大面积为838.35m2.【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论