北京市西城区第三中学2025届数学高一上期末检测试题含解析_第1页
北京市西城区第三中学2025届数学高一上期末检测试题含解析_第2页
北京市西城区第三中学2025届数学高一上期末检测试题含解析_第3页
北京市西城区第三中学2025届数学高一上期末检测试题含解析_第4页
北京市西城区第三中学2025届数学高一上期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市西城区第三中学2025届数学高一上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点,直线与线段相交,则直线的斜率的取值范围是()A.或 B.C. D.2.已知函数的定义域为R,是偶函数,,在上单调递增,则不等式的解集为()A. B.C D.3.设R,则“>1”是“>1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如图程序框图的算法源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的值分别为30,12,0,经过运算输出,则的值为()A.6 B.C.9 D.5.定义域在R上的函数是奇函数且,当时,,则的值为()A. B.C D.6.将函数()的图象向右平移个单位长度后,得到函数的图象,若为偶函数,则()A.5 B.C.4 D.7.在平行四边形中,,则()A. B.C.2 D.48.下列结论中正确的是A.若角的终边过点,则B.若是第二象限角,则为第二象限或第四象限角C.若,则D.对任意,恒成立9.函数(A,ω,φ为常数,A>0,ω>0,)的部分图象如图所示,则()A. B.C. D.10.将函数的图象先向右平移个单位长度,再向下平移1个单位长度,所得图象对应的函数解析式是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.为了解某校高三学生身体状况,用分层抽样的方法抽取部分男生和女生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,若全校男、女生比例为3:2,则全校抽取学生数为________12.已知集合,.若,则___________.13.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦矢+).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,弦长等于9m的弧田.按照上述经验公式计算所得弧田的面积是________.14.已知关于的方程在有解,则的取值范围是________15.已知幂函数的图象过点,则______.16.已知在平面直角坐标系中,角顶点在原点,始边与轴的正半轴重合,终边经过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算:18.已知的三个顶点为,,.(1)求边所在直线的方程;(2)若边上的中线所在直线的方程为,且,求的值.19.已知集合,(1)若,求;(2)若,求实数的取值范围.20.已知定义在上的奇函数满足:①;②对任意的均有;③对任意的,,均有.(1)求的值;(2)证明在上单调递增;(3)是否存在实数,使得对任意的恒成立?若存在,求出的取值范围;若不存在,请说明理由.21.函数部分图象如下图所示:(1)求函数的解析式;(2)求函数的最小正周期与单调递减区间;(3)求函数在上的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,所以直线过定点,所以,,直线在到之间,所以或,故选A2、A【解析】由题意判断出函数关于对称,结合函数的对称性与单调性求解不等式.【详解】∵是偶函数,∴函数关于对称,∴,又∵在上单调递增,∴在单调递减,∴可化为,解得,∴不等式解集为.故选:A3、A【解析】由可得成立,反之不成立,所以“”是“”的充分不必要条件考点:充分条件与必要条件4、D【解析】利用程序框图得出,再利用对数的运算性质即可求解.【详解】当时,,,当时,,,当时,,,当时,,所以.故选:D【点睛】本题考查了循环结构嵌套条件结构以及对数的运算,解题的关键是根据程序框图求出输出的结果,属于基础题.5、A【解析】根据函数的奇偶性和周期性进行求解即可.【详解】因为,所以函数的周期为,因为函数是奇函数,当时,,所以,故选:A6、C【解析】先由函数图象平移规律可得,再由为偶函数,可得(),则(),再由可得出的值.【详解】由题意可知,因为为偶函数,所以(),则(),因为,所以.故选:C.7、B【解析】由条件根据两个向量的加减法的法则,以及其几何意义,可得,,然后转化求解即可【详解】可得,,两式平方相加可得故选:8、D【解析】对于A,当时,,故A错;对于B,取,它是第二象限角,为第三象限角,故B错;对于C,因且,故,所以,故C错;对于D,因为,所以,所以,故D对,综上,选D点睛:对于锐角,恒有成立9、B【解析】根据函数图像易得,,求得,再将点代入即可求得得值.【详解】解:由图可知,,则,所以,所以,将代入得,所以,又,所以.故选:B.10、A【解析】利用三角函数的伸缩平移变换规律求解变换后的解析式,再根据二倍角公式化简.【详解】将函数的图象先向右平移个单位长度,得函数解析式为,再将函数向下平移1个单位长度,得函数解析式为.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、80【解析】频率分布直方图中,先根据小矩形的面积等于这一组的频率求出四与第五组的频率和,再根据条件求出前三组的频数,再依据频率的和等于1,求出前三组的频率,从而求出抽取的男生数,最后按比例求出全校抽取学生数即可【详解】根据图可知第四与第五组的频率和为(0.0125+0.0375)×5=0.25∵从左到右前三个小组频率之比1:2:3,第二小组频数为12∴前三个小组的频数为36,从而男生有人∵全校男、女生比例为3:2,∴全校抽取学生数为48×=80故答案为80【点睛】本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识12、【解析】根据给定条件可得,由此列式计算作答.【详解】因集合,,且,于是得,即,解得,所以.故答案为:13、.【解析】如下图所示,在中,求出半径,即可求出结论.【详解】设弧田的圆心为,弦为,为中点,连交弧为,则,所以矢长为,在中,,,所以,,所以弧田的面积为.故答案为:.【点睛】本题以数学文化为背景,考查直角三角形的边角关系,认真审题是解题的关键,属于基础题.14、【解析】将原式化为,然后研究函数在上的值域即可【详解】解:由,得,令,令,因为,所以,所以,即,因为,所以函数可化为,该函数在上单调递增,所以,所以,所以,所以的取值范围是,故答案为:15、【解析】结合幂函数定义,采用待定系数法可求得解析式,代入可得结果.【详解】为幂函数,可设,,解得:,,.故答案为:.【点睛】本题考查幂函数解析式和函数值的求解问题,关键是能够明确幂函数的定义,采用待定系数法求解函数解析式,属于基础题.16、【解析】根据角的终边经过点,利用三角函数的定义求得,然后利用二倍角公式求解.【详解】因为角的终边经过点,所以,所以,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)0【解析】(1)根据对数的运算法则和幂的运算法则计算(2)根据特殊角三角函数值计算【详解】解:;【点睛】本题考查指数与对数的运算,考查三角函数的计算.属于基础题18、(Ⅰ);(Ⅱ)或【解析】Ⅰ由斜率公式可得,结合点斜式方程整理计算可得BC边所在直线方程为.Ⅱ由题意可得,则△ABC的BC边上的高,据此由点到直线距离公式和直线方程得到关于m,n的方程组,求解方程组可得,或,.【详解】Ⅰ,,.,可得直线BC方程为,化简,得BC边所在直线方程为.Ⅱ由题意,得,,解之得,由点到直线的距离公式,得,化简得或,或.解得,或,.【点睛】本题主要考查直线方程的求解,点到直线距离公式的应用,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.19、(1)(2)的取值范围为【解析】(1)化简集合A,B求出集合B的补集,再求即可;(2)由得到集合A是集合B的子集,分别讨论集合A为空集和不是空集的情况,列出相应不等式,即可求解.【详解】解:(1)当时,,,或,可得.(2)①当时,,此时,成立;②当时,若,有,得,由上知,若,则实数的取值范围为.【点睛】本题主要考查了集合间的基本运算以及包含关系,注意集合A是集合B的子集时,不要忽略集合A为空集的情况,属于中档题.20、(1)0;(2)详见解析;(3)存在,.【解析】(1)利用赋值法即求;(2)利用单调性的定义,由题可得,结合条件可得,即证;(3)利用赋值法可求,结合函数的单调性可把问题转化为,是否存在实数,使得或在恒成立,然后利用参变分离法即求.【小问1详解】∵对任意的,,均有,令,则,∴;【小问2详解】,且,则又,对任意的均有,∴,∴∴函数在上单调递增.【小问3详解】∵函数为奇函数且在上单调递增,∴函数在上单调递增,令,可得,令,可得,又,∴,又函数在上单调递增,在上单调递增,∴由,可得或,即是否存在实数,使得或对任意的恒成立,令,则,则对于恒成立等价于在恒成立,即在恒成立,又当时,,故不存在实数,使得恒成立,对于对任意的恒成立,等价于在恒成立,由,可得在恒成立,又,在上单调递减,∴,综上可得,存在使得对任意的恒成立.【点睛】关键点点睛:本题第二问的关键是配凑,然后利用条件可证;第三问的关键是转化为否存在实数,使得或在恒成立,再利用参变分离法解决.21、(1);(2);;(3).【解析】(1)根据给定函数图象依次求出,再代入作答.(2)由(1)的结论结合正弦函数的性质求解作答.(3)在的条件下,求出(1)中函数的相位范围,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论