山西省忻州实验中学2025届数学高二上期末质量检测试题含解析_第1页
山西省忻州实验中学2025届数学高二上期末质量检测试题含解析_第2页
山西省忻州实验中学2025届数学高二上期末质量检测试题含解析_第3页
山西省忻州实验中学2025届数学高二上期末质量检测试题含解析_第4页
山西省忻州实验中学2025届数学高二上期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省忻州实验中学2025届数学高二上期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,动点P满足,则点P的轨迹为()A椭圆 B.双曲线C.抛物线 D.圆2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B.C. D.3.已知函数在处的导数为,则()A. B.C. D.4.在中,已知点在线段上,点是的中点,,,,则的最小值为()A. B.4C. D.5.某产品的销售收入(万元)是产量x(千台)的函数,且函数解析式为,生产成本(万元)是产量x(千台)的函数,且函数解析式为,要使利润最大,则该产品应生产()A.6千台 B.7千台C.8千台 D.9千台6.如果椭圆的弦被点平分,那么这条弦所在的直线的方程是()A. B.C. D.7.方程所表示的曲线为()A.射线 B.直线C.射线或直线 D.无法确定8.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C若,则 D.若,则9.执行如图所示的程序框图,输出的结果为()A.4 B.9C.23 D.6410.已知△的顶点B,C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△的周长是()A. B.C.8 D.1611.已知椭圆的左、右顶点分别为,上、下顶点分别为.点为上不在坐标轴上的任意一点,且四条直线的斜率之积大于,则的离心率的取值范围是()A. B.C. D.12.已知为等比数列的前n项和,,,则()A.30 B.C. D.30或二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,则_________.14.已知函数,则函数在上的最大值为_______15.已知双曲线,(,)的左右焦点分别为,过的直线与圆相切,与双曲线在第四象限交于一点,且有轴,则直线的斜率是___________,双曲线的渐近线方程为___________.16.在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点在抛物线()上,过点A且斜率为1直线与抛物线的另一个交点为B(1)求p的值和抛物线的焦点坐标;(2)求弦长18.(12分)如图所示,圆锥的高,底面圆的半径为,延长直径到点,使得,分别过点、作底面圆的切线,两切线相交于点,点是切线与圆的切点(1)证明:平面;(2)若平面与平面所成锐二面角的余弦值为,求该圆锥的体积19.(12分)已知直线过坐标原点,圆的方程为(1)当直线的斜率为时,求与圆相交所得的弦长;(2)设直线与圆交于两点,,且为的中点,求直线的方程20.(12分)如图所示,在四棱锥中,平面,底面是等腰梯形,.且(1)证明:平面平面;(2)若,求平面与平面的夹角的余弦值21.(12分)已知圆M经过原点和点,且它的圆心M在直线上.(1)求圆M的方程;(2)若点D为圆M上的动点,定点,求线段CD的中点P的轨迹方程.22.(10分)如图,四棱锥中,底面为梯形,底面,,,,.(1)求证:平面平面;(2)设为上一点,满足,若直线与平面所成的角为,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的定义即可求解.【详解】解:,故,又,根据椭圆的定义可知:P的轨迹为椭圆.故选:A.2、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A3、C【解析】利用导数的定义即可求出【详解】故选:C4、C【解析】利用三点共线可得,由,利用基本不等式即可求解.【详解】由点是的中点,则,又因为点在线段上,则,所以,当且仅当,时取等号,故选:C【点睛】本题考查了基本不等式求最值、平面向量共线的推论,考查了基本运算求解能力,属于基础题.5、A【解析】构造利润函数,求导,判断单调性,求得最大值处对应的自变量即可.【详解】设利润为y万元,则,∴.令,解得(舍去)或,经检验知既是函数的极大值点又是函数的最大值点,∴应生产6千台该产品.故选:A【点睛】利用导数求函数在某区间上最值的规律:(1)若函数在区间上单调递增或递减,与一个为最大值,一个为最小值(2)若函数在闭区间上有极值,要先求出上的极值,与,比较,最大的是最大值,最小的是最小值,可列表完成(3)函数在区间上有唯一一个极值点,这个极值点就是最大(或小)值点,此结论在导数的实际应用中经常用到6、B【解析】设该弦所在直线与椭圆的两个交点分别为,,则,利用点差法可得答案.【详解】设该弦所在直线与椭圆的两个交点分别为,,则因为,两式相减可得,,即由中点公式可得,所以,即,所以AB所在直线方程为,即故选:B7、C【解析】将方程化为或,由此可得所求曲线.【详解】由得:或,即或,方程所表示的曲线为射线或直线.故选:C.8、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C9、C【解析】直接按程序框图运行即可求出结果.【详解】初始化数值,,第一次执行循环体,,,1≥4不成立;第二次执行循环体,,,2≥4不成立;第三次执行循环体,,,3≥4不成立;第四次执行循环体,,,4≥4成立;输出故选:C10、D【解析】根据椭圆定义求解【详解】由椭圆定义得△的周长是,故选:D.11、A【解析】设,求得,得到,求得,结合,即可求解.【详解】由椭圆的方程,可得,设,则,由,因为四条直线的斜率之积大于,即,所以,则离心率,又因为椭圆离心率,所以椭圆的离心率的取值范围是.故选:A.12、A【解析】利用等比数列基本量代换代入,列方程组,即可求解.【详解】由得,则等比数列的公比,则得,令,则即,解得或(舍去),,则故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知可知即数列是首项为1,公差为1的等差数列,进而可求得数列的通项公式,即可求.【详解】由题意知:,即,而,∴数列是首项为1,公差为1的等差数列,有,∴,则.故答案为:【点睛】关键点点睛:由递推关系求数列的通项,进而得到的通项公式写出项.14、【解析】利用导数单调性求出的单调性,比较极小值与两端点,的大小求出在上的最大值.【详解】因为,则,令,即时,函数单调递增.令,即时,函数单调递减.所以的单调递减区间为,的单调递增区间为,所以在上单调递减,在上单调递增,所以函数的极小值也是函数的最小值.,两端点为,,即最大值为.故答案为:.15、①.②.【解析】由题意,不妨设直线与圆相切于点,由可得,代入双曲线方程,可得,因此,即得解【详解】如图所示,不妨设直线与圆相切于点,,由于代入进入,可得,渐近线方程为故答案为:,16、【解析】以A为坐标原点建立空间直角坐标系,利用向量法即可求解点P到直线EF的距离.【详解】解:如图,以A为坐标原点,,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,因为,所以,,,所以,,所以点P到直线EF的距离.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),焦点坐标(2)【解析】(1)将点的坐标代入抛物线的方程,可求得的值,进而可得抛物线的焦点坐标;(2)写出直线的方程,联立直线与抛物线方程求得交点坐标,利用两点之间的距离公式即可求解.【小问1详解】因为点在抛物线上,所以,即所以抛物线的方程为,焦点坐标为;【小问2详解】由已知得直线方程为,即由得,解得或所以,则18、(1)证明见解析;(2).【解析】(1)由线面垂直、切线的性质可得、,再根据线面垂直的判定即可证结论.(2)若,构建为原点,、、为x、y、z轴的空间直角坐标系,求面、面的法向量,利用空间向量夹角的坐标表示及其对应的余弦值求R,最后由圆锥的体积公式求体积.【小问1详解】由题设,底面圆,又是切线与圆的切点,∴底面圆,则,且,而,∴平面.【小问2详解】由题设,若,可构建为原点,、、为x、y、z轴的空间直角坐标系,又,可得,∴,,,有,,若是面的一个法向量,则,令,则,又面的一个法向量为,∴,可得,∴该圆锥的体积19、(1)(2)或【解析】(1)、由题意可知直线的方程为,圆的圆心为,半径为,求出圆心到直线的距离,根据勾股定理即可求出与圆相交所得的弦长;(2)、设,因为为的中点,所以,又因为,均在圆上,将,坐标代入圆方程,即可求出点坐标,即可求出直线的方程【小问1详解】由题意:直线过坐标原点,且直线的斜率为直线的方程为,圆的方程为圆的方程可化为:圆的圆心为,半径为圆的圆心到直线:的距离为,与圆相交所得的弦长为【小问2详解】设,为的中点,又,均在圆上,或直线方程或20、(1)证明见解析(2)【解析】(1)由线面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以为坐标原点,以,所在直线分别为,轴,以过点垂直于平面的直线为轴建立空间直角坐标系.求出平面的一个法向量、平面的法向量,由二面角的空间向量求法可得答案.【小问1详解】因为四边形是等腰梯形,,所以,所以,即因为平面,所以,又因为,所以平面,因为平面,所以平面平面【小问2详解】以为坐标原点,以,所在直线分别为,轴,以过点垂直于平面的直线为轴建立如图所示的空间直角坐标系设,则,所以,,,由(1)可知平面的一个法向量为设平面的法向量为,因为,,所以得令,则,,所以,则,所以平面与平面的夹角的余弦值为.21、(1).(2).【解析】(1)设圆M的方程为,由已知条件建立方程组,求解即可;(2)设,,依题意得.代入圆M的方程可得点P的轨迹方程.【小问1详解】解:设圆M的方程为,则圆心依题意得,解得.所以圆M的方程为.【小问2详解】解:设,,依题意得,得.点为圆M上的动点,得,化简得P的轨迹方程为.22、(1)证明见解析;(2).【解析】(1)由三角形的边角关系可证,再由底面,可得.即可证明底面,由面面垂直的判定定理得证.(2)以点为坐标原点,,,分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论