




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
猜想04与圆相关的几何综合(6种模型)题型一:两圆一中垂构造等腰三角形模型题型二:阿氏圆题型三:瓜豆原理题型四:圆中定值问题题型五:圆中最值问题题型六:辅助圆模型题型一:两圆一中垂构造等腰三角形模型一.选择题(共2小题)1.(2022春•新洲区期末)已知平面直角坐标系中有A(2,2)、B(4,0)两点,若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5个 B.6个 C.7个 D.8个2.(2022秋•沙洋县校级期末)平面直角坐标系中,已知A(1,2)、B(3,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8二.填空题(共2小题)3.(2022秋•龙亭区校级期末)如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在坐标轴上找一点P,使得△PAB是等腰三角形,则符合条件的点P共有个.4.(2021秋•邻水县期末)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是.题型二:阿氏圆一.填空题(共2小题)1.(2022秋•永嘉县校级期末)如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+2PN的取值范围为.2.(2021秋•龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则PA+PB的最小值为.二.解答题(共1小题)3.(2021秋•定海区期末)如图1,正方形OABC边长是2,以OA为半径作圆,P为弧AC上的一点,过点P作PM⊥AB交AB于点M,连结PO、PA,设PM=m,PA=n.(1)求证:∠POA=2∠PAM;(2)探求m、n的数量关系,并求n﹣m最大值;(3)如图2:连结PB,设PB=h,求h+2m的最小值.题型三:瓜豆原理一.填空题(共6小题)1.(2021秋•忠县期末)如图,在△ABC中,∠ACB=90°,点D在BC边上,BC=5,CD=2,点E是边AC所在直线上的一动点,连接DE,将DE绕点D顺时针方向旋转60°得到DF,连接BF,则BF的最小值为.2.(2021秋•嘉兴期末)如图,⊙O的直径AB=2,C为⊙O上动点,连结CB,将CB绕点C逆时针旋转90°得到CD,连结OD,则OD的最大值为.3.(2022春•槐荫区期末)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.4.(2021秋•沭阳县校级期末)如图,线段AB=2,点C为平面上一动点,且∠ACB=90°,将线段AC的中点P绕点A顺时针旋转90°得到线段AQ,连接BQ,则线段BQ的最大值为.5.(2021秋•鼓楼区校级期末)如图,在△ABC中,AB=AC,BC=6,tan∠ACB=2,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,CD,则CD长的最小值为.6.(2022秋•和平区校级期末)如图,长方形ABCD中,AB=3,BC=4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,将EF绕着点E顺时针旋转45°到EG的位置,连接FG和CG,则CG的最小值为.二.解答题(共1小题)7.(2021秋•武昌区期末)如图1,在△ABC中,BE平分∠ABC,CF平分∠ACB,BE与CF交于点D.(1)若∠BAC=74°,则∠BDC=;(2)如图2,∠BAC=90°,作MD⊥BE交AB于点M,求证:DM=DE;(3)如图3,∠BAC=60°,∠ABC=80°,若点G为CD的中点,点M在直线BC上,连接MG,将线段GM绕点G逆时针旋转90°得GN,NG=MG,连接DN,当DN最短时,直接写出∠MGC的度数.
题型四:圆中定值问题一.解答题(共3小题)1.(2021秋•吉林期末)某公园计划砌一个形状如图1的水池(图中长度单位:m),后有人建议改为如图2的形状,且外圆直径不变.【问题】请你计算两种方案中的圆形水池的周长,确定哪一种方案砌的圆形水池的周边需要的材料多.【猜想验证】如图3,如果将图2中的小圆半径改为r1,r2,r3,且r1+r2+r3=r,其他条件不变,猜想【问题】中的结论是否改变,并说明理由.【拓展】如图4,若将图3中三个小圆改为n个小圆,小圆半径分别为r1,r2,…,rn,且r1+r2+…+rn=r,直接写出图4中所有圆的周长总和.【应用】元宝是中国古代的货币,在今天也有着富贵吉祥的寓意,王师傅准备建设一个形如元宝的花坛,如图5,花坛是由4个半圆所围成,最大半圆的半径为2.1米,直接写出花坛周边需要的材料总长(结果保留π).2.(2022秋•天河区校级期末)如图①,已知⊙O是△ABC的外接圆,∠ABC=∠ACB=α(45°<α<90°,D为上一点,连接CD交AB于点E.(1)连接BD,若∠CDB=40°,求α的大小;(2)如图②,若点B恰好是中点,求证:CE2=BE•BA;(3)如图③,将CD分别沿BC、AC翻折得到CM、CN,连接MN,若CD为直径,请问是否为定值,如果是,请求出这个值,如果不是,请说明理由.3.(2021春•海曙区校级期末)如图1,E点为x轴正半轴上一点,⊙E交x轴于A、B两点,交y轴于C、D两点,P点为劣弧上一个动点,且A(﹣2,0),E(2,0).(1)的度数为°;(2)如图2,连结PC,取PC中点G,连结OG,则OG的最大值为;(3)如图3,连接PA,PC.若CQ平分∠PCD交PA于Q点,求线段AQ的长;(4)如图4,连接PA、PD,当P点运动时(不与B、C两点重合),求证:为定值,并求出这个定值.
题型五:圆中最值问题一.填空题(共3小题)1.(2022秋•海安市期末)如图,在△ABC中,AB=8,BC=6,D为BC上一点,当∠CAB最大时,连接AD并延长到E,使BE=BD,则AD•DE的最大值为.2.(2022秋•江门期末)如图,在矩形ABCD中,AB=3,BC=4,E为边BC上一动点,F为AE中点,G为DE上一点,BF=FG,则CG的最小值为.3.(2021秋•绵阳期末)如图,矩形ABCO的顶点A,C分别在x轴、y轴上,点B的坐标为(4,3),⊙M是△AOC的内切圆,点N,点P分别是⊙M,x轴上的动点,则BP+PN的最小值是.二.解答题(共6小题)4.(2021秋•汶上县期末)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作圆O交AO于点F.(1)求证:AC是⊙O的切线;(2)若∠AOE=60°,OE=3,在BC边上是否存在一点P使PF+PE有最小值,如果存在,请求出PF+PE的最小值.5.(2021秋•花都区期末)如图,⊙O是△ABC的外接圆,AB为直径,弦AD平分∠BAC,过点D作射线AC的垂线,垂足为M,点E为线段AB上的动点.(1)求证:MD是⊙O的切线;(2)若∠B=30°,AB=8,在点E运动过程中,EC+EM是否存在最小值?若存在,请求出最小值;若不存在,说明理由;(3)若点E恰好运动到∠ACB的角平分线上,连接CE并延长,交⊙O于点F,交AD于点P,连接AF,CP=3,EF=4,求AF的长.6.(2023春•丰城市期末)如图1,在矩形ABCD中,AD=12,AB=8,点E在射线AB上运动,将△AED沿ED翻折,使得点A与点G重合,连接AG交DE于点F.(1)【初步探究】当点G落在BC边上时,求BG的长;(2)【深入探究】在点E的运动过程中,BG是否存在最小值,如果存在,请求出最小值;如果不存在,请说明理由;(3)【拓展延伸】如图3,点P为BG的中点,连接AP,点E在射线AB上运动过程中,求AP长的最大值.7.(2021秋•秦淮区期末)如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.①设A、B、P三点所在圆的圆心为C,则点C的坐标是,⊙C的半径是;②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;(2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为.8.(2021秋•椒江区期末)如图1,已知⊙O的内接四边形ABCD,AB∥CD,BC∥AD,AB=6,BC=8.(1)求证:四边形ABCD为矩形.(2)如图2,E是上一点,连接CE交AD于点F,连接AC.①当点D是中点时,求线段DF的长度.②当16S△DCF=3S四边形ABCD时,试证明点E为的中点.(3)如图3,点E是⊙O上一点(点E不与A、C重合),连接EA、EC、OE,点Ⅰ是△AEC的内心,点M在线段OE上,且ME=2MO,则线段MI的最小值为.9.(2020秋•乐亭县期末)在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以原点O为圆心,半径为3的⊙O上,连接OC,过点O作OD⊥OC,OD与⊙O相交于点D(其中点C,O,D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为;(2)连接AC,BC,点C在⊙O上运动的过程中,当△ABC的面积最大时,请直接写出△ABC面积的最大值是.(3)连接AD,当OC∥AD,点C位于第二象限时,①求出点C的坐标;②直线BC是否为⊙O的切线?并说明理由.
题型六:辅助圆模型一.解答题(共10小题)1.(2021秋•武夷山市期末)如图,C为线段AB上一点,分别以AC、BC为边在AB的同侧作等边△HAC与等边△DCB,连接DH.(1)如图1,当∠DHC=90°时,直接写出DC与CH的数量关系为;(2)在(1)的条件下,点C关于直线DH的对称点为E,连接AE、BE,求证:CE平分∠AEB;(3)现将图1中△DCB绕点C顺时针旋转一定角度α(0°<α<90°),如图2,点C关于直线DH的对称点为E,则(2)中的结论是否成立并证明.2.(2021秋•自贡期末)在△ABC中,AB=AC,过点C作CD⊥BC,垂足为C,∠BDC=∠BAC,AC与BD交于点E.(1)如图1,∠ABC=60°,BD=6,求DC的长;(2)如图2,AM⊥BD,AN⊥CD,垂足分别为M,N,CN=4,求DB+DC的长.3.(2022秋•任城区校级期末)【阅读】辅助线是几何解题中沟通条件与结论的桥梁.在众多类型的辅助线中,辅助圆作为一条曲线型辅助线,显得独特而隐蔽.性质:如图①,若∠ACB=∠ADB=90°,则点D在经过A,B,C三点的圆上.【问题解决】运用上述材料中的信息解决以下问题:(1)如图②,已知DA=DB=DC.求证:∠ADB=2∠ACB.(2)如图③,点A,B位于直线l两侧.用尺规在直线l上作出点C,使得∠ACB=90°.(要求:要有画图痕迹,不用写画法)(3)如图④,在四边形ABCD中,∠CAD=90°,CB⊥DB,点F在CA的延长线上,连接DF,∠ADF=∠ABD.求证:DF是△ACD外接圆的切线.4.(2021秋•盱眙县期末)(1)【学习心得】小刚同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数,若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=°.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.小刚同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:△ABD的外接圆就是以BD的中点为圆心,BD长为半径的圆;△BCD的外接圆也是以BD的中点为圆心,BD长为半径的圆.这样A、B、C、D四点在同一个圆上,进而可以利用圆周角的性质求出∠BAC的度数,请运用小刚的思路解决这个问题.(3)【问题拓展】如图3,在△ABC中,∠BAC=45°,AD是BC边上的高,且BD=6,CD=2,求AD的长.5.(2021秋•宽城区期末)【问题原型】如图①,在⊙O中,弦BC所对的圆心角∠BOC=90°,点A在优弧BC上运动(点A不与点B、C重合),连结AB、AC.(1)在点A运动过程中,∠A的度数是否发生变化?请通过计算说明理由.(2)若BC=2,求弦AC的最大值.【问题拓展】如图②,在△ABC中,BC=4,∠A=60°.若M、N分别是AB、BC的中点,则线段MN的最大值为.6.(2021秋•泗阳县期末)如图,已知AB⊥MN于点B,且AB=10cm,将线段AB绕点B按逆时针方向旋转角α(0≤α≤360°)得到线段BC,过点C作CD⊥MN于点D,⊙O是△BCD的内切圆,直线AO、BC相交于点H.(1)若α=60°,则CD=cm.(2)若AO⊥BC①点H与⊙O的位置关系是;A.点H在⊙O外B.点H在⊙O上C.点H在⊙O内②求线段AO的长度.(3)线段AB绕点B按逆时针方向旋转90°,求点O运动的路径长.7.(2021秋•开福区校级期末)如图,在平面直角坐标系中,点M在x轴负半轴上,⊙M与x轴交于A、B两点(A在B的左侧),与y轴交于C、D两点(点C在y轴正半轴上),且,点B的坐标为(3,0),点P为优弧CAD上的一个动点,连结CP,过点M作ME⊥CP于点E,交BP于点N,连结AN.(1)求⊙M的半径长;(2)当BP平分∠ABC时,求点P的坐标;(3)当点P运动时,求线段AN的最小值.8.(2022秋•沙坪坝区校级期末)在等腰直角△ABC中,∠ACB=90°,D是线段BC上一点,延长BC至点E,使得CE=CD,过点E作EG⊥AD于点G,交AB于点F.(1)如图1,连接CG,若AD平分∠BAC,CG=2,求BC的长;(2)如图2,H是平面内一点,连接AH、DH,DA平分∠EDH,∠BAH=2∠CAD,用等式表示线段BD、BF、DH之间的数量关系,并证明;(3)如图3,在第(2)问的条件下,CD=2,AC=3,点M为平面内一点,连接BM
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乳品安全监管体系构建考核试卷
- 教育文具在远程教育中的应用考核试卷
- 乐器批发商的品牌市场渠道开发考核试卷
- 家用换气扇产业链协同创新发展模式与实践考核试卷
- 城市轨道交通的非折返运行与列车调度考核试卷
- 办公自动化软件综合应用考核试卷
- 丝印染在体育用品上的独特应用考核试卷
- 智能设备多模态交互设计考核试卷
- 工伤案例培训课件
- 快手代运营合同范本
- 北京垃圾分类管理制度
- 人力资源招聘与企业培训培训资料
- 电工学(第8版)(上册 电工技术) 课件全套 秦曾煌 第1-14章 电路的基本概念与基本定律- 传感器
- 人员素质测评 第2版 课件 第01章 人员素质测评概论
- 垃圾渗滤液处理站运维及渗滤液处理投标方案(技术标)
- 【深度学习研究国内外文献综述4000字(论文)】
- 二十六个英文字母教学课件
- 医院上半年运营分析课件
- 别克林荫大道说明书
- 数学三分钟演讲
- 启封密闭、排放瓦斯专项辨识
评论
0/150
提交评论