版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共10页江苏省淮安市朱坝中学2024年九年级数学第一学期开学综合测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,32、(4分)如果a<b,则下列式子错误的是()A.a+7<b+7 B.a﹣5<b﹣5C.﹣3a<﹣3b D.3、(4分)下列图形具有稳定性的是()A.三角形 B.四边形 C.五边形 D.六边形4、(4分)明明家与学校的图书馆和食堂在同一条直线上,食堂在家和图书馆之间。一天明明先去食堂吃了早餐,接着去图书馆看了一会书,然后回家。如图反应了这个过程中明明离家的距离y与时间x之间的对应关系,下列结论:①明明从家到食堂的平均速度为0.075km/min;②食堂离图书馆0.2km;③明明看书用了30min;④明明从图书馆回家的平均速度是0.08km/min,其中正确的个数是()A.1个 B.2个 C.3个 D.4个5、(4分)如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了()A.24m B.32m C.40m D.48m6、(4分)反比例函数的图象如图所示,以下结论错误的是()A.B.若点在图象上,则C.在每个象限内,的值随值的增大而减小D.若点,在图象上,则7、(4分)下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t8、(4分)小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是()A.小时 B.小时 C.或小时 D.或或小时二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:=2,=1.5,则射击成绩较稳定的是_______(填“甲”或“乙”).10、(4分)若,是一元二次方程的两个根,则______.11、(4分)如图,在反比例函数的图象上有四个点,,,,它们的横坐标依次为,,,,分别过这些点作轴与轴的垂线,则图中阴影部分的面积之和为______.12、(4分)如图,平行四边形ABCD内的一点E到边AD,AB,BC的距离相等,则∠AEB的度数等于____.13、(4分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数的图象上,从左向右第3个正方形中的一个顶点A的坐标为,阴影三角形部分的面积从左向右依次记为、、、、,则的值为______用含n的代数式表示,n为正整数三、解答题(本大题共5个小题,共48分)14、(12分)在一元二次方程x2-2ax+b=0中,若a2-b>0,则称a是该方程的中点值.(1)方程x2-8x+3=0的中点值是________;(2)已知x2-mx+n=0的中点值是3,其中一个根是2,求mn的值.15、(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点在小正方形的顶点上.(1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在小正方形的顶点上,且平行四边形ABCD的面积为15.(2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在小正方形的顶点上,请直接写出菱形ABEF的面积;16、(8分)在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表.请你根据统计图表所提供的信息回答下面问题:某校师生捐书种类情况统计表种类
频数
百分比
A.科普类
12
n
B.文学类
14
35%
C.艺术类
m
20%
D.其它类
6
15%
(1)统计表中的m=,n=;(2)补全条形统计图;(3)本次活动师生共捐书2000本,请估计有多少本科普类图书?17、(10分)第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲校20名学生成绩的频数分布表和频数分布直方图如下:b.甲校成绩在的这一组的具体成绩是:8788888889898989c.甲、乙两校成绩的平均分、中位数、众数、方差如下:根据以上图表提供的信息,解答下列问题:(1)表1中a=;表2中的中位数n=;(2)补全图1甲校学生样本成绩频数分布直方图;(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(4)假设甲校200名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为__________.18、(10分)如图1,矩形顶点的坐标为,定点的坐标为.动点从点出发,以每秒个单位长度的速度沿轴的正方向匀速运动,动点从点出发,以每秒个单位长度的速度沿轴的负方向匀速运动,两点同时运动,相遇时停止.在运动过程中,以为斜边在轴上方作等腰直角三角形,设运动时间为秒,和矩形重叠部分的面积为,关于的函数如图2所示(其中,,时,函数的解析式不同).当时,的边经过点;求关于的函数解析式,并写出的取值范围.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,点是平行四边形的对角线交点,,是边上的点,且;是边上的点,且,若分别表示和的面积,则__________.20、(4分)列不等式:据中央气象台报道,某日我市最高气温是33℃,最低气温是25℃,则当天的气温t(℃)的变化范围是______.21、(4分)利用计算机中“几何画板”软件画出的函数和的图象如图所示.根据图象可知方程的解的个数为3个,若m,n分别为方程和的解,则m,n的大小关系是________.22、(4分)等边三角形的边长为6,则它的高是________23、(4分)在矩形中,,,以为边在矩形外部作,且,连接,则的最小值为___________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.25、(10分)为了进一步了解某校八年级学生的身体素质情况,体育老师对该校八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下所示:
组别次数x频数(人数)第1组80≤x<1006第2组100≤x<1208第3组120≤x<140a第4组140≤x<16018第5组160≤x<1806
请结合图表完成下列问题:
(1)求表中a的值并把频数分布直方图补充完整;
(2)该班学生跳绳的中位数落在第组,众数落在第组;(3)若在一分钟内跳绳次数少于120次的为测试不合格,则该校八年级共1000人中,一分钟跳绳
不合格的人数大约有多少?26、(12分)如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中点,连结CM.(1)求证:CM⊥EF.(2)设正方形ABCD的边长为2,若五边形BCDEF的面积为,请直接写出CM的长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】分析:欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.详解:A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.故选D.点睛:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2、C【解析】
根据不等式的性质,逐项判断即可.【详解】解:∵a<b,∴a+7<b+7,故选项A不符合题意;
∵a<b,∴a-5<b-5,故选项B不符合题意;
∵a<b,∴-3a>-3b,故选项C符合题意;
∵a<b,∴,故选项D不符合题意.
故选:C.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.3、A【解析】
由题意根据三角形具有稳定性解答.【详解】解:具有稳定性的图形是三角形.故选:A.本题考查三角形具有稳定性,是基础题,难度小,需熟记.4、D【解析】
根据函数图象判断即可.【详解】解:明明从家到食堂的平均速度为:0.6÷8=0.075km/min,①正确;食堂离图书馆的距离为:0.8-0.6=0.2km,②正确;明明看书的时间:58-28=30min,③正确;明明从图书馆回家的平均速度是:0.8÷(68-58)=0.08km/min,④正确.故选D.本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.5、D【解析】
从A点出发,前进8m后向右转60°,再前进8m后又向右转60°,…,这样一直走下去,他第一次回到出发点A时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【详解】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,则60n=360,解得n=6,故他第一次回到出发点A时,共走了:8×6=48(m).故选:D.本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.6、D【解析】
根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【详解】解:∵反比例函数的图象位于一、三象限,∴k>0故A正确;
当点M
(1,3)在图象上时,代入可得k=3,故B正确;
当反比例函数的图象位于一、三象限时,在每一象限内,y随x的增大而减小,
故C正确;
将A(-1,a),B(2,b)代入中得到,得到a=-k,
∵k>0
∴a<b,
故D错误,
故选:D.本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键7、B【解析】
根据因式分解的意义,可得答案.【详解】A.分解不正确,故A不符合题意;B.把一个多项式转化成几个整式积的形式,故B符合题意;C.是整式的乘法,故C不符合题意;D.没把一个多项式转化成几个整式积的形式,故D不符合题意.故选B.本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.8、C【解析】
利用众数及中位数的定义解答即可.【详解】解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C.本题考查了众数及中位数的概念,解题的关键是根申请题意,并结合题意分类讨论解答.二、填空题(本大题共5个小题,每小题4分,共20分)9、答案为:乙;【解析】【分析】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定;乙的方差比较小,所以乙的成绩比较稳定.故答案为乙【点睛】本题考核知识点:方差.解题关键点:理解方差的意义.10、3【解析】
利用根与系数的关系可得两根之和与两根之积,再整体代入通分后的式子计算即可.【详解】解:∵,是一元二次方程的两个根,∴,∴.故答案为:3.本题考查的是一元二次方程根与系数的关系,熟练掌握基本知识是解题的关键.11、2【解析】
由题意,图中阴影部分的面积之和=×矩形AEOF的面积,根据比例系数k的几何意义即可解决问题;【详解】解:如图,∵反比例函数的解析式为,∴矩形AEOF的面积为1.由题意,图中阴影部分的面积之和=×矩形AEOF的面积=2,故答案为2.本题考查反比例函数的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.12、90°【解析】
点E到边AD,AB,BC的距离相等,可知可知AE、BE分别为∠DAB、∠ABC的角平分线,然后根据角平分线的定义及三角形内角和求解即可.【详解】依题意,可知AE、BE分别为∠DAB、∠ABC的角平分线,又AD∥BC,所以,∠DAB+∠CBA=180°,所以,∠DAB+∠CBA=90°,即∠EAB+∠EBA=90°,所以,∠AEB=90°.故答案为:90°.本题考查了角平分线的判定,平行四边形的性质,三角形内角和等知识,证明AE、BE分别为∠DAB、∠ABC的角平分线是解答本题的关键.13、【解析】
由题意可知Sn是第2n个正方形和第(2n-1)个正方形之间的阴影部分,先由已知条件分别求出图中第1个、第2个、第3个和第4个正方形的边长,并由此计算出S1、S2,并分析得到Sn与n间的关系,这样即可把Sn给表达出来了.【详解】∵函数y=x与x轴的夹角为45°,
∴直线y=x与正方形的边围成的三角形是等腰直角三角形,
∵A(8,4),
∴第四个正方形的边长为8,
第三个正方形的边长为4,
第二个正方形的边长为2,
第一个正方形的边长为1,
…,
第n个正方形的边长为,第(n-1)个正方形的边长为,
由图可知,S1=,S2=,…,由此可知Sn=第(2n-1)个正方形面积的一半,∵第(2n-1)个正方形的边长为,∴Sn=.
故答案为:.通过观察、计算、分析得到:“(1)第n个正方形的边长为;(2)Sn=第(2n-1)个正方形面积的一半.”是正确解答本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)4;(2)48.【解析】
(1)根据中点值的定义进行求解即可;(2)根据中点值的定义可求得m的值,再将方程的根代入方程可求得n的值,由此即可求得答案.【详解】(1),x2-2×4x+3=0,42-3=13>0,所以中点值为4,故答案为4;(2)由中点值的定义得:,,,将代入方程,得:,,.本题考查了一元二次方程的根,新定义,弄懂新定义是解题的关键.15、(1)见解析;(2)见解析;菱形ABEF的面积为8.【解析】
(1)由图可知A、B间的垂直方向长为3,要使平行四边形的面积为15,结合网格特点则可以在B的水平方向上取一条长为5的线段,可得点C,据此可得平行四边形;(2)根据网格特点,菱形性质画图,然后利用菱形所在正方形的面积减去三角形的面积以及小正方形的面积即可求得面积.【详解】(1)如图1所示,平行四边形ABCD即为所求;(2)如图2所示,菱形ABCD为所求,菱形ABCD的面积=4×4-4××3×1-2×1×1=16-6-2=8.本题考查了作图——应用与设计,涉及了平行四边形的性质,菱形的性质等,正确把握相关图形的性质以及网格的结构特点是解题的关键.16、(1)830%;(2)图形见解析;(3)600.【解析】试题分析:(1)n=1﹣35%﹣20%﹣15%=30%,∵此次抽样的书本总数为12÷30%=40(本),∴m=40﹣12﹣14﹣6=8;(2)根据(1)中m值可补全统计图;(3)用样本中科普类书籍的百分比乘以总数可得答案.试题解析:(1)m=8,n=30%;(2)统计图见下图:(3)2000×30%=600(本),答:估计有600本科普类图书.考点:1频率与频数;2条形统计图;3样本估计总体.17、(1)1,88.5;(2)见解析;(3)乙,乙的中位数是85,87>85;(4)140【解析】
(1)根据频数分布表和频数分布直方图的信息列式计算即可得到a的值,根据中位数的定义求解可得n的值;
(2)根据题意补全频数分布直方图即可;
(3)根据甲这名学生的成绩为87分,小于甲校样本数据的中位数88.5分,大于乙校样本数据的中位数85分可得;
(4)利用样本估计总体思想求解可得.【详解】(1)a=,由频数分布表和频数分布直方图中的信息可知,排在中间的两个数是88和89,∴,
故答案为:1,88.5;
(2)∵b=20-1-3-8-6=2,
∴补全图1甲校学生样本成绩频数分布直方图如图所示;(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是乙校的学生,
理由:乙的中位数是85,87>85,
故答案为:乙,乙的中位数是85,87>85;(4),∴成绩优秀的学生人数为140人,故答案为:140人.此题考查频数分布表,频数分布直方图,中位数的计算方法,利用部分估计总体的方法,正确理解题意是解题的关键.18、(1)1;(2)S=【解析】
(1)PQR的边QR经过点B时,构成等腰直角三角形,则由AB=AQ,列方程求出t值即可.(2)在图形运动的过程中,有三种情形,当1<t≤2时,当1<t≤2时,当2<t≤4时,进行分类讨论求出答案.【详解】解:PQR的边QR经过点B时,构成等腰直角三角形;AB=AQ,即3=4-t①当时,如图设交于点,过点作于点则②当时,如图设交于点交于点则,③当时,如图设与交于点,则综上所述,关于的函数关系式为:S=此题属于四边形综合题.考查了矩形的性质、等腰直角三角形的性质、相似三角形的判定与性质以及动点问题.注意掌握分类讨论思想的应用是解此题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、3:1【解析】
根据同高的两个三角形面积之比等于底边之比得,,再由点O是▱ABCD的对角线交点,根据平行四边形的性质可得S△AOB=S△BOC=S▱ABCD,从而得出S1与S1之间的关系.【详解】解:∵,,∴S1=S△AOB,S1=S△BOC.∵点O是▱ABCD的对角线交点,∴S△AOB=S△BOC=S▱ABCD,∴S1:S1=:=3:1,故答案为:3:1.本题考查了三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出,是解答本题的关键.20、25≤t≤1.【解析】
根据题意、不等式的定义解答.【详解】解:由题意得,当天的气温t(℃)的变化范围是25≤t≤1,
故答案为:25≤t≤1.本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,21、【解析】
的解可看作函数与的交点的横坐标的值,可看作函数与的交点的横坐标的值,根据两者横坐标的大小可判断m,n的大小.【详解】解:作出函数的图像,与函数和的图象分别交于一点,所对的横坐标即为m,n的值,如图所示由图像可得故答案为:本题考查了函数与方程的关系,将方程的解与函数图像相结合是解题的关键.22、【解析】
根据等边三角形的性质:三线合一,利用勾股定理可求解高.【详解】由题意得底边的一半是3,再根据勾股定理,得它的高为=3,故答案为3.本题考查的是等边三角形的性质,勾股定理,解答本题的关键是掌握好等腰三角形的三线合一:底边上的高、中线,顶角平分线重合.23、【解析】分析:由S△ABP=AB•h=15,得出三角形的高h=5,在直线AB外作直线l∥AB,且两直线间的距离为5,延长DA至M使AM=10,则M、A关于直线l对称,连接CM,交直线l于P,连接AP、BP,则S△ABP=15,此时AP+CP=CM,根据两点之间线段最短可知AP+CP的最小值为CM;然后根据勾股定理即可求得.详解;∵在矩形ABCD中,AB=6,BC=8,S△ABP=AB•h=15,∴h=5,在直线AB外作直线l∥AB,且两直线间的距离为5,延长DA至M使AM=10,则M、A关于直线l对称,连接CM,交直线l于P,连接AP、BP,则S△ABP=15,此时AP+CP=CM,根据两点之间线段最短可知AP+CP的最小值为CM;∵AD=8,AM=10,∴DM=18,∵CD=6,∴CM=,∴AP+CP的最小值为.故答案为.点睛:本题考查了轴对称-最短路线问题以及勾股定理的应用,根据题意作出点E是解题的关键.二、解答题(本大题共3个小题,共30分)2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医学合作研究协议书5篇
- 牛头包船课程设计
- 十四五大数据产业发展规划
- 2024有关消防演练活动总结(34篇)
- 美术微课程设计与制作
- 幼儿园美食实践课程设计
- 有趣的音乐游戏课程设计
- 《当代资本主义的新》课件
- 医药行业安全策略总结
- 2024-2025学年北京房山区初三(上)期末英语试卷
- 2023-2024学年广东省深圳市光明区高二(上)期末地理试卷
- 【8地RJ期末】安徽省芜湖市弋江区2023-2024学年八年级上学期期末考试地理试卷(含解析)
- 2025年春季幼儿园后勤工作计划
- SCI论文写作课件
- (完整版)建筑力学(习题答案)
- 少年宫篮球活动教案
- 国有建设企业《大宗材料及设备采购招标管理办法》
- 民间秘术绝招大全
- (完整版)展厅展馆博物馆美术馆设计标招标评分细则及打分表
- [宋小宝小品甄嬛后传台词]甄嬛歪传小品剧本台词范本
- 扭扭棒手工PPT课件
评论
0/150
提交评论