




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页吉林省辽源市东丰县小四平镇中学2025届数学九年级第一学期开学达标测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知:x1,x2,x3...x10的平均数是a,x11,x12,x13...x50的平均数是b,则x1,x2,x3...x50的平均数是()A.a+b B. C. D.2、(4分)在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在的()A.三边中垂线的交点 B.三边中线的交点C.三条角平分线的交点 D.三边上高的交点3、(4分)在分式中,的取值范围是()A. B. C. D.4、(4分)若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣ B. C.﹣2 D.25、(4分)一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90,则这五个数据的中位数是()A.90 B.95 C.100 D.1056、(4分)如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为()A. B.C. D.7、(4分)如图,数轴上的点A所表示的数是()A. B. C. D.8、(4分)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()
A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,小明作出了边长为2的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是_______,第n个正△AnBnCn的面积是______10、(4分)函数与的图象如图所示,则的值为____.11、(4分)一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.12、(4分)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有▲人.13、(4分)如图,在正方形外取一点,连接、、.过点作的垂线交于点,连接.若,,下列结论:①;②;③点到直线的距离为;④,其中正确的结论有_____________(填序号)三、解答题(本大题共5个小题,共48分)14、(12分)先化简,再求值:(1),其中.(2),并在2,3,4,5这四个数中取一个合适的数作为的值代入求值.15、(8分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级学生参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下(单位:分):七年级889490948494999499100八年级84938894939893989799整理数据:按如下分数段整理数据并补全表格:成绩x人数年级七年级1153八年级44分析数据:补全下列表格中的统计量:统计量年级平均数中位数众数方差七年级93.69424.2八年级93.79320.4得出结论:你认为哪个年级学生“汉字听写”大赛的成绩比较好?并说明理由.(至少从两个不同的角度说明推断的合理性)16、(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.17、(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.18、(10分)在矩形ABCD中,AB=3,AD=2,点E是射线DA上一点,连接EB,以点E为圆心EB长为半径画弧,交射线CB于点F,作射线FE与CD延长线交于点G.(1)如图1,若DE=5,则∠DEG=______°;(2)若∠BEF=60°,请在图2中补全图形,并求EG的长;(3)若以E,F,B,D为顶点的四边形是平行四边形,此时EG的长为______.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.20、(4分)如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.21、(4分)如图,在正方形ABCD中,E为AB中点,连结DE,过点D作DF⊥DE交BC的延长线于点F,连结EF,若AE=1,则EF的值为__.22、(4分)已知是一个关于的完全平方式,则常数的值为______.23、(4分)定义一种运算法则“”如下:,例如:,若,则的取值范围是____________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,△ABC中,AB=10,BC=6,AC=8.(1)求证:△ABC是直角三角形;(2)若D是AC的中点,求BD的长.(结果保留根号)25、(10分)(1)若解关于x的分式方程会产生增根,求m的值.(2)若方程的解是正数,求a的取值范围.26、(12分)如图所示,已知△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点A关于原点O对称的点坐标;(1)将△ABC向右平移6个单位,再向上平移3个单位,得到△A1B1C1,画出△A1B1C1;(3)将△ABC绕点O逆时针转90°,得到△A1B1C1,画出△A1B1C1.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
根据平均数及加权平均数的定义解答即可.【详解】∵x1,x2,x3...x10的平均数是a,x11,x12,x13...x50的平均数是b,∴x1,x2,x3...x50的平均数是:.故选D.本题考查了平均数及加权平均数的求法,熟练运用平均数及加权平均数的定义求解是解决问题的关键.2、A【解析】
为使游戏公平,则凳子到三个人的距离相等,根据线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】解:∵三角形的三条边的垂直平分线的交点到三角形三个顶点距离相等,∴凳子应放在△ABC的三边中垂线的交点.故选:A.本题主要考查了线段垂直平分线的性质的应用,利用所学的数学知识解决实际问题是一种能力,要注意培养.3、A【解析】
根据分式有意义,分母不等于0列式计算即可得解.【详解】由题意得,x-1≠0,解得x≠1.故选A.本题考查的是分式有意义的条件,解题的关键是掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4、B【解析】
根据一次函数图象上点的坐标特征,把(2,1)代入y=kx中即可计算出k的值.【详解】把(2,1)代入y=kx得2k=1,解得k=.故选B.本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.5、B【解析】试题分析:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.将数据按照从小到大的顺序排列为:90,90,1,105,110,根据中位数的概念可得中位数为1.故答案选B.考点:中位数.6、B【解析】
先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象【详解】根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S关于t的图象的中间部分为水平的线段,故A,D选项错误;当t=0时,S=0,故C选项错误,B选项正确;故选:B本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键7、A【解析】
由题意,利用勾股定理求出点A到−1的距离,即可确定出点A表示的数.【详解】根据题意得:数轴上的点A所表示的数为−1=,故选:A.此题考查了实数与数轴,弄清点A表示的数的意义是解本题的关键.8、B【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选B.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是.【详解】正△A1B1C1的面积是×22==,∵△A2B2C2与△A1B1C1相似,并且相似比是1:2,∴面积的比是1:4,则正△A2B2C2的面积是×==;∵正△A3B3C3与正△A2B2C2的面积的比也是1:4,∴面积是×==;依此类推△AnBnCn与△An﹣1Bn﹣1Cn﹣1的面积的比是1:4,第n个三角形的面积是.故答案是:,.考查了相似三角形的判定与性质,以及等边三角形的性质,找出题中的规律是解题的关键.10、1【解析】
将x=1代入可得交点纵坐标的值,再将交点坐标代入y=kx可得k.【详解】解:把x=1代入得:y=1,∴与的交点坐标为(1,1),
把x=1,y=1代入y=kx得k=1.
故答案是:1.本题主要考查两条直线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式.11、.【解析】
小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,据此可得两次摸出的球都是红球的概率.【详解】∵小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,∴两次摸出的球都是红球的概率为:×=.故答案为:.本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.12、216【解析】由题意得,50个人里面坐公交车的人数所占的比例为:15/50=30%,故全校坐公交车到校的学生有:720×30%=216人.即全校坐公交车到校的学生有216人.13、①②④【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;
②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;
③过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
④连接BD,求出△ABD的面积,然后减去△BDP的面积即可。【详解】解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,∴△APD≌△AEB(SAS);
故此选项成立;
②∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此选项成立;
③过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,又∴点B到直线AE的距离为故此选项不正确;
④如图,连接BD,在Rt△AEP中,
∵AE=AP=1,又∵△APD≌△AEB,=S正方形ABCD故此选项正确.
∴正确的有①②④,故答案为:①②④本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.三、解答题(本大题共5个小题,共48分)14、(1),;(2),时,原式.或(则时,原式)【解析】
(1)根据分式的运算法则把所给的分式化为最简分式后,再代入求值即可;(2)根据分式的运算法则把所给的分式化为最简分式后,再选择一个使每个分式都有意义的a的值代入求值即可.【详解】(1),当时,原式.(2)原式,∵、2、3,∴或,则时,原式.或(则时,原式)只要一个结果正确即可本题考查了分式的化简求值,根据分式的运算法则把所给的分式化为最简分式是解决问题的关键.15、整理数据:八年级段1人,段1人;分析数据:七年级众数94,八年级中位数93.5;得出结论:八年级学生大赛的成绩比较好,见解析.【解析】
整理数据:根据八年级抽取10名学生的成绩,可得;
分析数据:根据题目给出的数据,利用众数的定义,中位数的定义求出即可;得出结论:根据给出的平均数和方差分别进行分析,即可得出答案.【详解】解:整理数据:八年级段1人,段1人分析数据,由题意,可知94分出现次数最多是4次,所以七年级10名学生的成绩众数是94,
将八年级10名学生的成绩从小到大排列为:84,88,93,93,93,94,97,98,98,99,
中间两个数分别是93,94,(93+94)÷2=93.5,
所以八年级10名学生的成绩中位数是93.5;得出结论:认为八年级学生大赛的成绩比较好.理由如下:八年级学生大赛成绩的平均数较高,表示八年级学生大赛的成绩较好;八年级学生大赛成绩的方差小,表示八年级学生成绩比较集中,整体水平较好.故答案为:整理数据:八年级段1人,段1人;分析数据:七年级众数94,八年级中位数93.5;得出结论:八年级学生大赛的成绩比较好,见解析.本题考查平均数、中位数、众数、方差的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.16、(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【解析】
(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1),将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击的中位数,∵乙射击的次数是10次,∴=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.17、(1)证明见解析;(2).【解析】
(1)根据矩形ABCD的性质,判定△BOE≌△DOF(ASA),进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【详解】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,BD⊥EF,设BE=x,则
DE=x,AE=6-x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6-x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键18、(1)45;(2)见解析,EG=4+2;(3)2【解析】
(1)由题意可得AE=AB=3,可得∠AEB=∠ABE=45°,由矩形的性质可得AD∥BC,可得∠AEB=∠EBF=45°,∠EFB=∠GED,结合等腰三角形的性质,即可求解;(2)由题意画出图形,可得∠F=∠5=60°,可得∠6=∠G=30°,由直角三角形的性质可得AE=,DE=2+,由直角三角形的性质可得EG的长;(3)由平行四边形的性质可得EF=BD,ED=BF,由等腰三角形的性质可得AE=AD=2,由勾股定理可求EF=BE=,由EH∥CG∥BM,H是BF的中点,B是HC的中点,即可求解.【详解】(1)∵DE=5,AB=3,AD=2,∴AE=AB=3,∴∠AEB=∠ABE=45°,∵四边形ABCD是矩形,∴AD∥CB,∴∠AEB=∠EBF=45°,∠EFB=∠GED,∵EF=EB,∴∠EFB=∠EBF=45°,∴∠GED=45°,故答案为:45;(2)如图1所示.∵四边形ABCD是矩形,∴∠1=∠2=∠3=∠ABF=∠C=90°.∵∠4=60°,EF=EB,∴∠F=∠5=60°.∴∠6=∠G=30°,∴AE=BE.∵AB=3,∴根据勾股定理可得:AE2+32=(2AE)2,解得:AE=,∵AD=2,∴DE=2+,∴EG=2DE=4+2;(3)如图2,连接BD,过点E作EH⊥FC,延长BA交FG于点M,∵四边形EDBF是平行四边形,∴EF=BD,ED=BF,∵EF=BE,∴EB=BD,且AB⊥DE,∴AE=AD=2,∴BF=DE=4,∵EB==,∴EF=,∵EF=BE,EH⊥FC,∴FH=BH=2=BC,∴CH=4,∵EH⊥BC,CD⊥BC,AB⊥BC,∴EH∥CG∥BM,∵H是BF的中点,B是HC的中点,∴E是FM的中点,M是EG的中点,∴EG═2EF=2故答案为:2本题主要考查矩形的性质,平行四边形的性质,勾股定理,等腰三角形的性质,直角三角形的性质定理,添加辅助线,构造等腰三角形和直角三角形是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、乙【解析】
由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【详解】解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.故答案为:乙.本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.20、①②③④【解析】
首先证明证明Rt△ADF≌Rt△BAC,结合已知得到AE=DF,然后根据内错角相等两直线平行得到DF∥AE,由一组对边平行且相等可得四边形ADFE是平行四边形,故②正确;由∠DAC=∠DAB+∠BAC=90°,可得∠AHE=90°,故①正确;由2AG=AF可知③正确;在Rt△DBF和Rt△EFA中,BD=FE,DF=EA,可证Rt△DBF≌Rt△EFA,故④正确.【详解】∵△ABD和△ACE都是等边三角形,
∴AD=BD=AB,AE=CE=AC,∠ADB=∠BAD=∠DBA=∠CAE=∠AEC=∠ACE=60°.
∵F是AB的中点,∴∠BDF=∠ADF=30°,∠DFA=∠DFB=90°,BF=AF=AB.
∵∠BAC=30°,∠ACB=90°,AD=2AF.
∴BC=AB,∠ADF=∠BAC,
∴AF=BF=BC.
在Rt△ADF和Rt△BAC中
AD=BA,AF=BC,
∴Rt△ADF≌Rt△BAC(HL),
∴DF=AC,
∴AE=DF.
∵∠BAC=30°,
∴∠BAC+∠CAE=∠BAE=90°,
∴∠DFA=∠EAB,
∴DF∥AE,
∴四边形ADFE是平行四边形,故②正确;∴AD=EF,AD∥EF,设AC交EF于点H,
∴∠DAC=∠AHE.
∵∠DAC=∠DAB+∠BAC=90°,
∴∠AHE=90°,
∴EF⊥AC.①正确;
∵四边形ADFE是平行四边形,
∴2GF=2GA=AF.
∴AD=4AG.故③正确.
在Rt△DBF和Rt△EFA中
BD=FE,DF=EA,
∴Rt△DBF≌Rt△EFA(HL).故④正确,
故答案为:①②③④.本题解题的关键:运用到的性质定理有,直角全等三角形的判定定理HL,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,全等三角形对应边与对应角相等的性质,平行四边形对角线互相平分与两组对边平行且相等的性质.21、【解析】
根据题意可得AB=2,∠ADE=∠CDF,可证△ADE≌△DCF,可得CF=1,根据勾股定理可得EF的长.【详解】∵ABCD是正方形∴AB=BC=CD,∠A=∠B=∠DCB=∠ADC=90°∵DF⊥DE∴∠EDC+∠CDF=90°且∠ADE+∠EDC=90°∴∠ADE=∠CDF,且AD=CD,∠A=∠DCF=90°∴△ADE≌△CDF(SAS)∴AE=CF=1∵E是AB中点∴AB=BC=2∴BF=3在Rt△BE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025企业单方终止合同补偿
- 2025地质勘察合同范本
- 2025委托开发合同范本协议
- 2025技术合作 科技创新与资本对接项目合同
- 2025家居设计代购简约版合同范本
- 山东省泰安市2025届高三二轮复习检测语文试题及参考答案
- 2025年农村房屋买卖合同范本
- 2025供暖设备供应合同(模板)
- 2025年购买二手别墅合同范本
- 2025版权质押合同深度分析
- 公司接待流程图
- 常用急救技术-环甲膜穿刺、切开术(急救技术课件)
- 新团员入团仪式PPT模板
- 铁粒幼细胞贫血教学课件
- 土木工程毕业设计计算书(含建筑设计+结构设计+设计图纸)
- 02jrc901b电子海图操作jan中文说明书
- 织码匠文字材料语言大纲目录
- 课程思政示范课程申报书(测绘基础)
- 2023年河南应用技术职业学院单招职业适应性测试题库及答案解析
- 国家开放大学《人文英语4》边学边练参考答案
- TY/T 2001-2015国民体质测试器材通用要求
评论
0/150
提交评论