版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页吉林省靖宇县2025届九年级数学第一学期开学调研模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)以下列长度的线段为边,能构成直角三角形的是()A.2,3,4 B.4,5,6 C.8,13,5 D.1,,12、(4分)武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A.九(1)班的学生人数为40 B.m的值为10C.n的值为20 D.表示“足球”的扇形的圆心角是70°3、(4分)下列事件中,属于随机事件的是().A.凸多边形的内角和为B.凸多边形的外角和为C.四边形绕它的对角线交点旋转能与它本身重合D.任何一个三角形的中位线都平行于这个三角形的第三边4、(4分)下列各式成立的是()A. B. C. D.5、(4分)实数a,b在数轴上的位置如图所示,则化简代数式|a+b|−a的结果是()A.2a+b B.2a C.a D.b6、(4分)班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为()A.x(x-1)=90B.x(x-1)=2×90C.x(x-1)=90÷2D.x(x+1)=907、(4分)要使分式5xA.x≠1 B.x>18、(4分)如图,四边形是矩形,,,点在第二象限,则点的坐标是A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,若,则=___.10、(4分)设,若,则____________.11、(4分)在平面直角坐标系中有一点,则点P到原点O的距离是________.12、(4分)如图所示,在▱ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,则AD的长为.13、(4分)如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.三、解答题(本大题共5个小题,共48分)14、(12分)如图1,在正方形ABCD中,点E、F分别是边BC、CD上的点,且CE=CF,连接AE,AF,取AE的中点M,EF的中点N,连接BM,MN.(1)请判断线段BM与MN的数量关系和位置关系,并予以证明.(2)如图2,若点E在CB的延长线上,点F在CD的延长线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.15、(8分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图(图中的数字表示每一级台阶的高度,单位cm).已知数据15、16、16、14、14、15的方差S甲2=,数据11、15、18、17、10、19的方差S乙2=.请你用学过的统计知识(平均数、中位数、方差和极差)通过计算,回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.16、(8分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.(1)当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.17、(10分)用适当的方法解下列方程:(1)5x2=4x(2)(x+1)(3x﹣1)=018、(10分)计算与化简:计算:化简:已知,求:的值B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:1.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:已知x3=10648,且x为整数∵1000=103<10648<1003=1000000,∴x一定是______位数∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是_____;∴x=______.20、(4分)一次函数y=-4x-5的图象不经过第_____________象限.21、(4分)正方形,,,...按如图的方式放置,点,,...和点,,...分别在直线和轴上,则点的坐标为_______.22、(4分)已知点A(,)、B(,)在直线上,且直线经过第一、三、四象限,当时,与的大小关系为____.23、(4分)如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.二、解答题(本大题共3个小题,共30分)24、(8分)一块直角三角形木块的面积为1.5m2,直角边AB长1.5m,想要把它加工成一个面积尽可能大的正方形桌面,甲、乙两人的加工方法分别如图①、图②所示。你能用所学知识说明谁的加工方法更符合要求吗?25、(10分)如图,在△ABC中,AB=10,AD平分∠BAC交BC于点D,若AD=8,BD=6,求AC的长.26、(12分)上午6:00时,甲船从M港出发,以80和速度向东航行。半小时后,乙船也由M港出发,以相同的速度向南航行。上午8:00时,甲、乙两船相距多远?要求画出符合题意的图形.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为22+32≠42,所以不能组成直角三角形;B、因为52+42≠62,所以不能组成直角三角形;C、因为52+82≠132,所以不能组成直角三角形;D、因为12+12=()2,所以能组成直角三角形.故选:D.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2、D【解析】分析:由条形统计图和扇形统计图得到喜欢篮球的人数而后所占的百分比,求出人数,根据人数求出m、n,根据表示“足球”的百分比求出扇形的圆心角.详解:由图①和图②可知,喜欢篮球的人数是12人,占30%,12÷30%=40,则九(1)班的学生人数为40,A正确;4÷40=10%,则m的值为10,B正确;1−40%−30%−10%=20%,n的值为20,C正确;360°×20%=72°,D错误,故选:D.点睛:本题主要考查了条形统计图,扇形统计图,解题关键在于理解条形统计图和扇形统计图.3、C【解析】
随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.【详解】解:、凸n多边形的内角和,故不可能为,所以凸多边形的内角和为是不可能事件;、所有凸多边形外角和为,故凸多边形的外角和为是必然事件;、四边形中,平行四边形绕它的对角线交点旋转能与它本身重合,故四边形绕它的对角线交点旋转能与它本身重合是随机事件;、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.故选:.本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【解析】
直接利用二次根式的性质分别化简得出答案.【详解】解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确.
故选:D.此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.5、D【解析】
首先根据数轴可以得到a、b的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】由数轴上各点的位置可知:a<0<b.∴|a+b|−a=a+b−a=b.故选D.此题考查整式的加减,实数与数轴,解题关键在于结合数轴分析a,b的大小.6、A【解析】
如果设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,则一共送了x(x﹣1)张,再根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.【详解】设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.故选A.本题考查了一元二次方程的应用.解题的关键是读清题意,找准数量关系,列出方程.7、A【解析】
根据分式分母不为0的条件进行求解即可.【详解】由题意得x-1≠0,解得:x≠1,故选A.8、D【解析】
过C作CE⊥y轴于E,过A作AF⊥y轴于F,得到∠CEO=∠AFB=90°,根据矩形的性质得到AB=OC,AB∥OC,根据全等三角形的性质得到CE=AF,OE=BF,BE=OF,于是得到结论.【详解】解:过作轴于,过作轴于,,四边形是矩形,,,,,同理,,,,,,,,,,点的坐标是;故选:.本题考查了矩形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
根据等边三角形的性质就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=∠BDC,由等腰直角三角形的性质就可以得出∠ADB=90°,由勾股定理就可以得出:,再设AE=k,则AD=3k,BD=k,求出BC=k,进而得到的值.【详解】∵△ACB与△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,∴,∠ECD−∠ACD=∠ACB−∠ACD,∴∠ACE=∠BCD.在△AEC和△BDC中,,∴△AEC≌△BDC(SAS),∴AE=BD,∠E=∠BDC,∴∠BDC=45°,∴∠BDC+∠ADC=90°,即∠ADB=90°.∴.∵,∴可设AE=k,则AD=3k,BD=k,∴,∴BC=,∴.故答案为:.此题考查勾股定理、等腰直角三角形、全等三角形的判定与性质,解题关键在于“设k法”列出比例式即可.10、【解析】
根据已知条件求出,,得到m-n与m+n,即可求出答案.【详解】∵,∴,∴,∵m>n>0,∴,,∴,故答案为:.此题考查利用算术平方根的性质化简,平反差公式的运用,熟记公式是解题的关键.11、13【解析】
根据点的坐标利用勾股定理,即可求出点P到原点的距离【详解】解:在平面直角坐标系中,点P到原点O的距离为:,故答案为:13.本题主要考查学生对勾股定理和点的坐标的理解和掌握,此题难度不大,属于基础题.12、6cm.【解析】试题分析:由平行四边形ABCD中,对角线AC和BD交于点O,OE∥BC,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD的长.解:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∵OE∥BC,∴OE∥AD,∴OE是△ACD的中位线,∵OE=3cm,∴AD=2OE=2×3=6(cm).故答案为:6cm.【点评】此题考查了平行四边形的性质以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.13、.【解析】
设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于D,BE⊥轴于点E,由全等三角形的判定定理可知△AOD△OBE(ASA),故可得出,即可求得的值.【详解】解:设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于D,BE⊥轴于点E,如图:∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,∴∠OAD=∠BOE,同理可得∠AOD=∠OBE,在△AOD和△OBE中,,∴△AOD△OBE(ASA),∵点B在第四象限,∴,即,解得,∴反比例函数的解析式为:.故答案为.本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)BM=MN,BM⊥MN,证明见解析;(2)仍然成立,证明见解析【解析】
(1)根据已知正方形ABCD的边角相等关系,推出△ABE≌△ADF(SAS),得出AE=AF,利用MN是△AEF的中位线,BM为Rt△ABE的中线,可得BM=MN,由外角性质,得出∠BME=∠1+∠3,再由MN∥AF,∠1+∠2+∠EAF=∠BAD=90°,等角代换可推出结论;(2)同(1)思路一样,证明△ABE≌△ADF(SAS),利用外角性质和中位线平行关系,通过等角代换即得证明结论.【详解】(1)BM=MN,BM⊥MN.证明:在正方形ABCD中,∠BAD=∠ABC=∠ADC=90°,AB=AD=BC=DC,∵CE=CF,∴BC-CE=DC-CF,∴BE=DF,∴△ABE≌△ADF(SAS),∴∠1=∠2,AE=AF,∵M为AE的中点,N为EF的中点,∴MN是△AEF的中位线,BM为Rt△ABE的中线.∴MN∥AF,MN=AF,BM=AE=AM,∴BM=MN,∠EMN=∠EAF,∵BM=AM,∴∠1=∠3,∠2=∠3,∴∠BME=∠1+∠3=∠1+∠2,∴∠BMN=∠BME+∠EMN=∠1+∠2+∠EAF=∠BAD=90°,∴BM⊥MN.故答案为:BM=MN,BM⊥MN.(2)(1)中结论仍然成立.证明:在正方形ABCD中,∠BAD=∠ABC=∠ADC=90°,AB=AD=BC=DC,∴∠ABE=∠ADF=90°,∵CE=CF,∴CE-BC=CF-DC,∴BE=DF,∴△ABE≌△ADF(SAS),∴∠1=∠2,AE=AF,同理(1)得MN∥AF,MN=AF,BM=AE=AM,∴BM=MN,同理(1)得∠BME=∠1+∠2,∠EMN=∠EAF,∴∠BMN=∠EMN-∠BME=∠EAF-(∠1+∠2)=∠BAD=90°,∴BM⊥MN,故答案为:结论仍成立.考查了正方形的性质,全等三角形的判定和性质,外角的性质,直角三角形中中线的性质,三角形中位线性质,熟记几何图形的性质概念是解题关键,注意图形的类比拓展.15、(1)相同点:两段台阶路台阶高度的平均数相同;不同点:两段台阶路台阶高度的中位数、方差和极差均不相同;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm(原平均数)使得方差为1.【解析】
(1)分别求出甲、乙两段台阶路的高度平均数、中位数、极差即可比较;(2)根据方差的性质解答;(3)根据方差的性质提出合理的整修建议.【详解】(1)(1)甲段台阶路的高度平均数=×(15+16+16+14+14+15)=15,乙段台阶路的高度平均数=×(11+15+18+17+11+19)=15;甲段台阶路的高度中位数是15,乙段台阶路的高度中位数是=16;甲段台阶路的极差是16-14=2,乙段台阶路的极差是19-11=8,∴相同点:两段台阶路台阶高度的平均数相同.不同点:两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)整修建议:每个台阶高度均为15cm(原平均数)使得方差为1.本题考查的是平均数、方差,掌握算术平均数的计算公式、方差的计算公式是解题的关键.16、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.【解析】
(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.【详解】(1)①如图1,,反比例函数为,当时,,,当时,,,,设直线的解析式为,,,直线的解析式为;②四边形是菱形,理由如下:如图2,由①知,,轴,,点是线段的中点,,当时,由得,,由得,,,,,,四边形为平行四边形,,四边形是菱形;(2)四边形能是正方形,理由:当四边形是正方形,记,的交点为,,当时,,,,,,,,,,.此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.17、(1)x1=0,x2=;(2)x1=﹣1,x2=.【解析】
(1)先移项,然后利用因式分解法解方程;
(2)利用因式分解法解方程.【详解】解:(1)由原方程,得x(5x﹣4)=0,则x=0或5x﹣4=0,解得x1=0,x2=;(2)(x+1)(3x﹣1)=0,x+1=0或3x﹣1=0,x1=﹣1,x2=.本题考查了因式分解法解一元二次方程.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学转化思想).18、(1);(2);(3)2.【解析】
(1)根据二次根式的化简、零指数幂及负指数幂计算即可;(2)先算括号里分式的减法,再将除法转化为乘法约分即可;(3)先将分式的分子和分母因式分解再将除法转化为乘法计算,最后算加法,化简后将代入求解即可.【详解】解:(1);(2);(3)当时,原式.本题考查了指数幂的计算及分式的加减乘除混合运算,熟练掌握零指数幂及负指数幂的计算公式及分式加减乘除运算的法则是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、两;2;2;22【解析】
根据立方和立方根的定义逐一求解可得.【详解】已知,且为整数,,一定是两位数,的个位数字是,的个位数字一定是,划去后面的三位得,,的十位数字一定是,.故答案为:两、、、.本题主要考查立方根,解题的关键是掌握立方与立方根的定义.20、一【解析】
根据一次函数的性质可以判断该函数经过哪几个象限,不经过哪个象限,本题得以解决.【详解】∵一次函数y=-4x-5,k=-4<0,b=-5<0,∴该函数经过第二、三、四象限,不经过第一象限,故答案为:一.本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.21、【解析】
按照由特殊到一般的思路,先求出点A1、B1;A2、B2;A3、B3;A4、B4的坐标,得出一般规律,进而得出点An、Bn的坐标,代入即得答案.【详解】解:∵直线,x=0时,y=1,∴OA1=1,∴点A1的坐标为(0,1),点B1的坐标为(1,1),∵对直线,当x=1时,y=2,∴A2C1=2,∴点A2的坐标为(1,2),点B2的坐标为(3,2),∵对直线,当x=3时,y=4,∴A3C2=4,∴点A3的坐标为(3,4),点B3的坐标为(7,4),∵对直线,当x=7时,y=8,∴A4C3=8,∴点A4的坐标为(7,8),点B4的坐标为(15,8),……∴点An的坐标为(2n﹣1﹣1,2n﹣1),点Bn的坐标为(2n﹣1,2n﹣1)∴点的坐标为(22019﹣1,22018)本题主要考查一次函数图象上点的坐标特征、正方形的性质和规律的探求,解决这类问题一般从特殊情况入手,找
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度生态园林建设绿化种树承包合同2篇
- 2025年度养老院老人外出活动责任分担协议3篇
- 2025年度网约车司机兼职车辆使用协议3篇
- 2025年度男女朋友共同创业合作协议书3篇
- 2025年度海洋工程机械设备租赁协议2篇
- 二零二五年度高原特色农产品进出口销售合同3篇
- 2025年度养殖产品市场销售合作协议书2篇
- 2025年度公司管理人员兼职与聘用合同3篇
- 2025年度户外广告牌安装与夜间照明安全协议3篇
- 二零二五年度农村土地经营权流转与农业产业扶贫合作合同3篇
- 小学生心理健康讲座5
- 上海市市辖区(2024年-2025年小学五年级语文)部编版期末考试((上下)学期)试卷及答案
- 国家职业技术技能标准 X2-10-07-18 陶瓷工艺师(试行)劳社厅发200633号
- 人教版八年级上册生物全册教案(完整版)教学设计含教学反思
- 2024年银行考试-银行间本币市场交易员资格考试近5年真题附答案
- 人教版小学四年级数学上册期末复习解答题应用题大全50题及答案
- 冀教版五年级上册脱式计算题100道及答案
- 你是排长我是兵(2022年山东济南中考语文试卷记叙文阅读题及答案)
- 《ISO56001-2024创新管理体系 - 要求》之22:“8运行-8.2 创新行动”解读和应用指导材料(雷泽佳编制-2024)
- 广东省中山市2023-2024学年高三物理上学期第五次统测试题含解析
- 《体育科学研究方法》题库
评论
0/150
提交评论