黑龙江省哈尔滨市哈三中2025届高一上数学期末质量检测试题含解析_第1页
黑龙江省哈尔滨市哈三中2025届高一上数学期末质量检测试题含解析_第2页
黑龙江省哈尔滨市哈三中2025届高一上数学期末质量检测试题含解析_第3页
黑龙江省哈尔滨市哈三中2025届高一上数学期末质量检测试题含解析_第4页
黑龙江省哈尔滨市哈三中2025届高一上数学期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市哈三中2025届高一上数学期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则()A. B.C. D.2.函数f(x)图象大致为()A. B.C. D.3.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则4.若cos(πA.-29C.-595.定义在上的奇函数以5为周期,若,则在内,的解的最少个数是A.3 B.4C.5 D.76.如图所示,在平面直角坐标系中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,点Р的坐标为()A. B.C D.7.在高一期中考试中,甲、乙两个班的数学成绩统计如下表:班级人数平均分数方差甲302乙203其中,则甲、乙两个班数学成绩的方差为()A.2.2 B.2.6C.2.5 D.2.48.为了抗击新型冠状病毒肺炎,保障师生安全,学校决定每天对教室进行消毒工作,已知药物释放过程中,室内空气中含药量y()与时间t(h)成正比();药物释放完毕后,y与t的函数关系式为(a为常数,),据测定,当空气中每立方米的含药量降低到0.5()以下时,学生方可进教室,则学校应安排工作人员至少提前()分钟进行消毒工作A.25 B.30C.45 D.609.函数的定义城为()A B.C. D.10.已知函数,若,且当时,则的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则=_________12.已知圆C:(x﹣2)2+(y﹣1)2=10与直线l:2x+y=0,则圆C与直线l的位置关系是_____13.已知函数,则下列命题正确的是______填上你认为正确的所有命题的序号①函数单调递增区间是;②函数的图象关于点对称;③函数的图象向左平移个单位长度后,所得的图象关于y轴对称,则m的最小值是;④若实数m使得方程在上恰好有三个实数解,,,则14.已知是定义在R上的周期为2的奇函数,当时,,则___________.15.设函数,若关于的不等式的解集为,则__________16.已知正数a,b满足,则的最小值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知tan(1)求tana(2)求sin2a18.已知若,求方程的解;若关于x的方程在区间上有两个不相等的实根、:求实数k的取值范围;证明:19.某校手工爱好者社团出售自制的工艺品,每件的售价在20元到40元之间时,其销售量(件)与售价(元/件)之间满足一次函数关系,部分对应数据如下表所示.(元/件)20212223……3940(件)440420400380……6040(1)求此一次函数的解析式;(2)若每件工艺品的成本是20元,在不考虑其他因素的情况下,每件工艺品的售价是多少时,利润最大?最大利润是多少?20.已知函数,.(1)若角满足,求;(2)若圆心角为,半径为2的扇形的弧长为,且,,求.21.如图,AB是圆柱OO1的一条母线,BC是底面的一条直径,D是圆О上一点,且AB=BC=5,CD=3(1)求该圆柱的侧面积;(2)求点B到平面ACD的距离

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先计算得到,,再利用展开得到答案.详解】,,;,;故选:【点睛】本题考查了三角函数值的计算,变换是解题的关键.2、A【解析】根据函数图象的特征,利用奇偶性判断,再利用特殊值取舍.【详解】因为f(x)=f(x),所以f(x)是奇函数,排除B,C又因为,排除D故选:A【点睛】本题主要考查了函数的图象,还考查了理解辨析的能力,属于基础题.3、D【解析】若,则需使得平面内有直线平行于直线;若,则需使得,由此为依据进行判断即可【详解】当时,可确定平面,当时,因为,所以,所以;当平面交平面于直线时,因为,所以,则,因为,所以,因为,所以,故A错误,D正确;当时,需使得,选项B、C中均缺少判断条件,故B、C错误;故选:D【点睛】本题考查空间中直线、平面的平行关系与垂直关系的判定,考查空间想象能力4、C【解析】cos(π2-α)=sin5、D【解析】由函数的周期为5,可得f(x+5)=f(x),由于f(x)为奇函数,f(3)=0,若x∈(0,10),则可得出f(3)=f(-2)=-f(2)=0,即f(2)=0,∴f(8)=f(3)=0,∴f(7)=f(2)=0.在f(x+5)=f(x)中,令x=-2.5,可得f(2.5)=f(-2.5)=-f(2.5),∴f(2.5)=f(7.5)=0.再根据f(5)=f(0)=0,故在(0,10)上,y=f(x)的零点的个数是2,2.5,3,5,7,7.5,8,共计7个.故选D点睛:本题是函数性质的综合应用,奇偶性周期性的结合,先从周期性入手,利用题目条件中的特殊点得出其它的零点,再结合奇偶性即可得出其它的零点.6、D【解析】如图,根据题意可得,利用三角函数的定义和诱导公式求出,进而得出结果.【详解】如图,由题意知,,因为圆的半径,所以,所以,所以,即点.故选:D7、D【解析】根据平均数和方差的计算性质即可计算.【详解】设甲、乙两班学生成绩分别为,甲班平均成绩为,乙班平均成绩为,因为甲、乙两班的平均成绩相等,所以甲、乙两班合在一起后平均成绩依然为,因为,同理,∴甲、乙两班合在一起后的方差为:.故选:D.8、C【解析】计算函数解析式,取计算得到答案.【详解】∵函数图像过点,∴,当时,取,解得小时分钟,所以学校应安排工作人员至少提前45分钟进行消毒工作.故选:C.9、C【解析】由对数函数的性质以及根式的性质列不等式组,即可求解.【详解】由题意可得解得,所以原函数的定义域为,故选:C10、B【解析】首先确定函数的解析式,然后确定的取值范围即可.【详解】由题意可知函数关于直线对称,则,据此可得,由于,故令可得,函数的解析式为,则,结合三角函数的性质,考查临界情况:当时,;当时,;则的取值范围是.本题选择B选项.【点睛】本题主要考查三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】按照解析式直接计算即可.【详解】.故答案为:-3.12、相交【解析】根据题意只需判断圆心到直线的距离与半径比较大小即可判断详解】由题意有圆心,半径则圆心到直线的距离故直线与圆C相交故答案为:相交【点睛】本题主要考查直线和圆的位置关系的判断,属于基础试题13、①③④【解析】先利用辅助角公式化简,再根据函数,结合三角函数的性质及图形,对各选项依次判断即可【详解】①,令,所以,因为,所以令,则,所以单调增区间是,故正确;②因为,所以不是对称中心,故错误;③的图象向左平移个单位长度后得到,且是偶函数,所以,所以且,所以时,,故正确;④函数,故错误;⑤因为,作出在上的图象如图所示:与有且仅有三个交点:所以,又因为时,且关于对称,所以,所以,故正确;故选:①③⑤14、##【解析】根据函数的周期和奇偶性即可求得答案.【详解】因为函数的周期为2的奇函数,所以.故答案为:.15、【解析】根据不等式的解集可得、、为对应方程的根,分析两个不等式对应方程的根,即可得解.【详解】由于满足,即,可得,所以,,所以,方程的两根分别为、,而可化为,即,所以,方程的两根分别为、,,且不等式解集为,所以,,解得,则,因此,.故答案为:.【点睛】关键点点睛:本题主要考查一元二次不等式与方程之间的关系,即不等式解集的端点即为对应方程的根,本题在理解、、分别为方程、的根,而两方程含有公共根,进而可得出关于实数的等式,即可求解.16、##【解析】右边化简可得,利用基本不等式,计算化简即可求得结果.【详解】,故,则,当且仅当时,等号成立故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3;(2)35【解析】(1)根据正切的差角公式即可直接求出答案;(2)利用齐次式即可直接求出答案.【小问1详解】因为tana-π4=1解得tanα=3【小问2详解】sin=18、(1)(2),见解析【解析】当时,分类讨论,去掉绝对值,直接进行求解,即可得到答案讨论两个根、的范围,结合一元二次方程根与系数之间的关系进行转化求解【详解】当时,,当时,,由,得,得舍或;当时,,由得舍;故当时,方程的解是不妨设,因为,若、,与矛盾,若、,与是单调函数矛盾,则;则…①…②由①,得:,由②,得:;的取值范围是;联立①、②消去k得:,即,即,则,,,即【点睛】本题主要考查了函数与方程的应用,根据条件判断根的范围,以及利用一元二次方程与一次方程的性质进行转化是解决本题的关键,着重考查了分析问题和解答问题的能力,试题综合性较强,属于中档试题19、(1)(2)每件工艺品的售价为31元时,利润最大,最大利润为2420元【解析】(1)设,任取两级数据代入求得参数值得解析式;(2)由(1)中关系式得出利润与的关系,由二次函数的性质得最大值【小问1详解】设,不妨选择两组数据,代入,可得解得∴一次函数的解析式为【小问2详解】设利润为元,由题意可得,∴当时,,∴每件工艺品的售价为31元时,利润最大,最大利润为2420元20、(1)(2)或【解析】(1)对已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论