版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西咸阳武功县普集高级中学2025届高一上数学期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则()A. B.C. D.2.与终边相同的角的集合是A. B.C. D.3.为了得到函数的图象,只需要把函数的图象上所有的点①向左平移个单位,再把所有各点的横坐标缩短到原来的倍;②向左平移个单位,再把所有各点的横坐标缩短到原来的倍;③各点的横坐标缩短到原来的倍,再向左平移个单位:④各点的横坐标缩短到原来的倍,再向左平移个单位其中命题正确的为()A.①③ B.①④C.②③ D.②④4.方程组的解集是()A. B.C. D.5.直线L将圆平分,且与直线平行,则直线L的方程是A.BC.D.6.不等式恒成立,则的取值范围为()A. B.或C. D.7.已知偶函数在区间内单调递增,若,,,则的大小关系为()A. B.C. D.8.函数(且)的图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.9.已知点P(cosα,sinα),Q(cosβ,sinβ),则的最大值是()A. B.2C.4 D.10.已知且,函数,满足对任意实数,都有成立,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为偶函数,当时,,当时,,则不等式的解集为__________12.设,若存在使得关于x的方程恰有六个解,则b的取值范围是______13.已知函数,若是上的单调递增函数,则的取值范围是__________14.已知角的终边过点,则___________.15.已知函数的部分图象如图所示,则___________16.已知向量的夹角为,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求的单调递增区间;(2)令函数,再从条件①、条件②这两个条件中选择一个作为已知,求在区间上的最大值及取得最大值时的值条件①:;条件②:注:如果选择条件①和条件②分别解答,按第一个解答计分18.已知集合,(1),求实数的取值范围;(2)设,,若是的必要不充分条件,求实数的取值范围19.已知.(1)化简;(2)若α=-,求f(α)的值.20.已知集合,(1)当时,求;(2)若,求的取值范围21.为适应市场需求,某公司决定从甲、乙两种类型工业设备中选择一种进行投资生产,根据公司自身生产经营能力和市场调研,得出生产经营这两种工业设备的有关数据如下表:类别年固定成本每台产品原料费每台产品售价年最多可生产甲设备100万元m万元50万元200台乙设备200万元40万元90万元120台假定生产经营活动满足下列条件:①年固定成本与年生产的设备台数无关;②m为待定常数,其值由生产甲种设备的原料价格决定,且m∈[30,40];③生产甲种设备不需要支付环保、专利等其它费用,而生产x台乙种设备还需支付环保,专利等其它费用0.25x2万元;④生产出来的设备都能在当年全部销售出去(Ⅰ)若该公司选择投资生产甲设备,则至少需要年生产a台设备,才能保证对任意m∈[30,40],公司投资生产都不会赔本,求a的值;(Ⅱ)公司要获得最大年利润,应该从甲、乙两种工业设备中选择哪种设备投资生产?请你为该公司作出投资选择和生产安排
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】比较a、b、c与中间值0和1的大小即可﹒【详解】,,,∴﹒故选:A﹒2、D【解析】根据终边相同的角定义的写法,直接写出与角α终边相同的角,得到结果【详解】根据角的终边相同的定义的写法,若α=,则与角α终边相同的角可以表示为k•360°(k∈Z),即(k∈Z)故选D【点睛】本题考查与角α的终边相同的角的集合的表示方法,属于基础题.3、B【解析】利用三角函数图象变换可得出结论.【详解】因为,所以,为了得到函数的图象,只需要把函数的图象上所有的点向左平移个单位,再把所有各点的横坐标缩短到原来的倍,或将函数的图象上各点的横坐标缩短到原来的倍,再向左平移个单位.故①④满足条件,故选:B.4、A【解析】解出方程组,写成集合形式.【详解】由可得:或.所以方程组的解集是.故选:A5、C【解析】圆的圆心坐标,直线L将圆平分,所以直线L过圆的圆心,又因为与直线平行,所以可设直线L的方程为,将代入可得所以直线L的方程为即,所以选C考点:求直线方程6、A【解析】先讨论系数为0的情况,再结合二次函数的图像特征列不等式即可.【详解】不等式恒成立,当时,显然不恒成立,所以,解得:.故选:A.7、D【解析】先利用偶函数的对称性判断函数在区间内单调递减,结合偶函数定义得,再判断,和的大小关系,根据单调性比较函数值的大小,即得结果.【详解】偶函数的图象关于y轴对称,由在区间内单调递增可知,在区间内单调递减.,故,而,,即,故,由单调性知,即.故选:D.8、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误9、B【解析】,则,则的最大值是2,故选B.10、D【解析】根据单调性的定义可知函数在R上为增函数,即可得到,解出不等式组即可得到实数的取值范围【详解】∵对任意实数,都有成立,∴函数在R上为增函数,∴,解得,∴实数的取值范围是故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求出不等式在的解,然后根据偶函数的性质可得出不等式在上的解集.【详解】当时,令,可得,解得,此时;当时,令,解得,此时.所以,不等式在的解为.由于函数为偶函数,因此,不等式的解集为.故答案为:.【点睛】本题考查分段函数不等式的求解,同时也涉及了函数奇偶性的应用,考查运算求解能力,属于中等题.12、【解析】作出f(x)的图像,当时,,当时,.令,则,则该关于t的方程有两个解、,设<,则,.令,则,据此求出a的范围,从而求出b的范围【详解】当时,,当时,,当时,,则f(x)图像如图所示:当时,,当时,令,则,∵关于x的方程恰有六个解,∴关于t的方程有两个解、,设<,则,,令,则,∴且,要存a满足条件,则,解得故答案为:13、【解析】利用函数的单调性求出a的取值范围,再求出的表达式并其范围作答.【详解】因函数是上的单调递增函数,因此有,解得,所以.故答案为:14、【解析】根据角终边所过的点,求得三角函数,即可求解.【详解】因为角的终边过点则所以故答案为:【点睛】本题考查了已知终边所过的点,求三角函数的方法,属于基础题.15、【解析】由图象可得最小正周期的值,进而可得,又函数图象过点,利用即可求解.【详解】解:由图可知,因为,所以,解得,因为函数的图象过点,所以,又,所以,故答案为:.16、【解析】由已知得,所以,所以答案:点睛:向量数量积的求法及注意事项:(1)计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用(2)求向量模的常用方法:利用公式,将模的运算转化为向量的数量积的运算,解题时要注意向量数量积运算率的灵活应用(3)利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)答案不唯一,具体见解析【解析】(1)根据正弦函数的单调增区间建立不等式求解即可得出;(2)选①代入,化简,令,转化为二次函数求值域即可,选择条件②代入化简,令,根据正弦函数的图象与性质求最值即可求解.【小问1详解】函数的单调增区间为()由,,解得,,所以的单调增区间为,【小问2详解】选择条件①:令,因为,所以所以所以,因为在区间上单调递增,所以当时,取得最大值所以当时,取得最大值选择条件②:令,因为,所以所以当时,即时,取得最大值18、(1)(2)【解析】(1)化简集合,,由,利用两个集合左右端点的大小分类得出实数的取值范围(2)根据题意可得,推不出,即是的真子集,进而得出实数的取值范围【小问1详解】由题意,,且,或,或,实数的取值范围是【小问2详解】命题,命题,是的必要不充分条件,,推不出,即是的真子集,,解得:实数的取值范围为19、(1)(2)【解析】(1)直接利用诱导公式化简即可;(2)根据诱导公式计算即可.【小问1详解】解:;【小问2详解】解:.20、(1);(2).【解析】(1)当时,可求出集合,再求出集合,取交集即可得到答案.(2)根据,可得,分别求出集合和集合,集合是集合的子集,即可得到答案.【小问1详解】当时,集合,,即集合,,故.【小问2详解】,集合,集合,.21、(Ⅰ)10(Ⅱ)详见解析【解析】(Ⅰ)由年销售量为a台,按利润的计算公式求得利润,再由利润大于等于0,分离参数a求解;(Ⅱ)分别写出投资生产甲、乙两种工业设备的利润函数,由函数的单调性及二次函数的性质求函数的最大值,然后作出比较得答案【详解】(Ⅰ)由年销售a台甲设备,公司年获利y1=50a-100-am,由y1=50a-100-am≥0(30≤m≤40),得a≥(30≤m≤40),函数f(m)=在[30,40]上为增函数,则f(m)max=10,∴a≥10则对任意m∈[30,40],公司投资生产都不会赔本,a的值为10台;(Ⅱ)由年销售量为x台,按利润的计算公式,有生产甲、乙两设备的年利润y1,y2分别为:y1=50x-(100+mx)=(50-m)x-100,0≤x≤200且x∈Ny2=90x-(200+40x)-0.25x2=-0.25x2+50x-200=-0.25(x-100)2+2300,0≤x≤120,x∈N∵30≤m≤40,∴50-m>0,∴y1=(50-m)x-100为增函数,又∵0≤x≤200,x∈N,∴x=200时,生产甲设备的最大年利润为(50-m)×200-100=9900-200m(万元)又y2=-0.25(x-100)2+2300,0≤x≤120,x∈N∴x=100时,生产乙设备的最大年利润为2300(万元)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度电商平台合伙人佣金分配与服务协议3篇
- 2025版酒店蔬菜品质追溯系统采购合同范本3篇
- 2024青海绿色建筑建材研发与应用合同范本3篇
- 二零二五年度跨境电商仓储物流商务协议书
- 二零二五年度文化产业担保四方借款合同3篇
- 二零二五年度交通事故人伤赔偿公益诉讼协议
- 二零二五年度医疗合作合同终止及解除协议书
- 2025年度环保合作协议定义与多种类型全面介绍
- 2025年度变更抚养权协议书:家庭和谐共育与子女抚养合同
- 2025年度跨境贸易融资协议书(含汇率风险控制条款)2篇
- 福建泉州惠安县2023-2024学年数学四年级第一学期期末质量跟踪监视试题含答案
- DL5168-2023年110KV-750KV架空输电线路施工质量检验及评定规程
- 门诊发生火灾应急预案演练建议5篇,门诊发生火灾的应急预案
- 医疗废物转运工作制度
- 新编建筑施工扣件式钢管脚手架安全技术规范
- 三年级下册小猿口算题1000道
- 《古兰》中文译文版
- 井下机电安装安全教育培训试题及答案
- GB/T 4744-2013纺织品防水性能的检测和评价静水压法
- GB/T 24267-2009建筑用阻燃密封胶
- 劳动仲裁追加申请申请书(标准版)
评论
0/150
提交评论